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In digital image processing, thresholding is a  well-known technique for image segmentat ion. 
Because of its wide applicability to other areas of the digital image processing, quite a  number  
of thresholding methods have  been  proposed over the years. In this paper,  we present a  survey 
of thresholding techniques and  update the earlier survey work by  Weszka  (Comput. Vision 
Graphics 62  Image Process 7, 1978, 259-265) and  Fu  and  Mu (Pattern Recognit.  13, 1981, 
3-16). W e  attempt to evaluate the performance of some automatic global thresholding 
methods using the criterion functions such as  uniformity and  shape measures.  The  evaluation 
is based  on  some real world images. 0  1988 Academic press, IX. 

1. INTRODUCTION 

A popular tool used in image segmentat ion is thresholding. This paper  represents 
a  survey of a  variety of thresholding (also known as binarization) techniques 
including both global and  local thresholding. For the sake of discussion, global 
techniques are further classified as: point-dependent and  region-dependent tech- 
niques. Several global thresholding methods are examined in detail to evaluate their 
performance based on  a  given set of test images. In this paper, we endeavor  to 
update the earlier survey papers by Weszka [44] and  Fu  and  Mu  [13]. We  also 
attempt to evaluate the performance of several global thresholding methods using a  
shape measure and  a  region uniformity measure as criterion functions. The  evalua- 
tion is conducted on  a  set of images digitized from photographs of a  portrait and  
natural scenes. Although our primary goal is to present a  survey of bilevel threshold- 
ing methods, extensions of these methods to mu ltithresholding problems are also 
treated in this paper. 

Let N be  the set of natural numbers,  (x, y) be  the spatial coordinate of a  
digitized image, and  G  = (0, 1, . . . , I - 1) be  a  set of positive integers representing 
gray levels. Then,  an  image function can be  defined as the mapp ing f : N x N + G . 
The  brightness (i.e., gray level) of a  pixel with coordinate (x, y) is denoted as 
f(K Y)- 

Let t E G  be  a  threshold and  B = {b,, b,} be  a  pair of binary gray levels and  
b,,b, E G . The  result of thresholding an  image function f(. , a) at gray level t is a  
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binary image function f, : N x N + B, such that 

In general, a thresholding method is one that determines the value t* of t based 
on a certain criterion. If t* is determined solely from the gray level of each pixel, 
then the thresholding method is point-dependent. If t* is determined from the local 
property (e.g., the local gray level distribution) in the neighborhood of each pixel, 
then the thresholding method is region-dependent. A global thresholding technique 
is one that thresholds the entire image with a single threshold value, whereas a local 
thresholding technique is one that partitions a given image into subimages and 
determines a threshold for each of these subimages. 

Let the number of pixels with gray level i be ni. Then the total number of pixels 
in a given image is 

I-1 

n = C ni. 
r=O 

The probability of occurrence of gray level i is defined as 

p,= “I. 
n 

Also, by convention, the gray level 0 is the darkest and the gray level 1 - 1 is the 
lightest. 

2. GLOBAL THRESHOLDING: POINT DEPENDENT TECHNIQUES 

A. p-tile Method 
One of the earliest thresholding methods is the p-tile method [lo]. In this method, 

an image is assumed to consist of dark objects in a light background. By assuming 
that the percentage of the object area is known, the threshold is defined as the 
highest gray level which maps at least (100 - p)% of the pixels into the objects in 
the thresholded image. For example, suppose an object occupies 20% of an image, 
then the image should be thresholded at the highest gray level that allows at least 
20% of the pixels to be mapped into the object. Obviously, this method is not 
applicable to images whose object area is not known. 

B. Mode Method 
For images with distinct objects and background, the histogram of the gray levels 

will be bimodal. In this case, a threshold can be chosen as the gray level that 
corresponds to the valley of the histogram. The technique is called the mode method 
[31]. Though this method is simple, it cannot be applied to images with extremely 
unequal peaks or to those with broad and flat valleys. 

C. Ostu Method 
This method, as proposed in [27], is based on discriminant analysis. In this 

method, the threshold operation is regarded as the partitioning of the pixels of an 
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image into two classes C,, and C, (e.g., objects and background) at gray level t. That 
is, C, = {O,l,. . . , t}andC,={t+l,t+2,...,1-l}.Leta~,u&andc$bethe 
within-class variance, between-class variance, and the total variance, respectively. 
An optimal threshold can be determined by m inimiz,ing one of the following 
(equivalent) criterion functions with respect to t: 

q=<, and 4 
UT 

K=y. 

UW 

Of the above three criterion functions, n is the simplest. Thus, the optimal 
threshold f* is 

t* = ArgMinn, 
tEG 

where 

I-1 I-1 

U$= C(i-jJT)*Pi, PT= zipi? 
i=O i=O 

t 
wO= CPi, 01 = 1 - wg, 

i=O 

PT- CL, 

I-%= l-oo’ 
po=II, 

*0 

p‘= i ip,. 

i=O 

D. Histogram Concavity Analysis Method 

For images with distinct objects and background it is possible to select the 
threshold from the gray level histogram using the mode method. For some images 
where valleys may not be found in their gray level histogram, it is often possible to 
define a good threshold at the “shoulder” of the histogram. Since both valleys and 
shoulders correspond to the concavities in the histogram, a threshold can be 
determined by analyzing the concavity of the histogram [35]. 

Let HS be a histogram defined over a set of gray levels go, g,, . . . , g,-,. Denote 
the height of the histogram at these gray levels as h( go), h( gl), . . . , h(g,-,), where 
h( gi) # 0 for all i. Thus, HS can be regarded as a two-dimensional region. 

To determine the concavities of HS, its convex hull is constructed. It is the 
smallest convex polygon m  which contains HS. The concavities of HS are 
determined from the set-theoretic difference HS - B. Let h ( gi) be the height of iE 
at gray level gi. Possible threshold values are gray levels at which & ( gi) - h( gi) has 
local maxima. However, not all these maxima are good candidates for thresholding 
because large concavities can also be introduced by noise spikes. Rosenfeld and 
De La Torre [35] call such concavities spurious. In order to eliminate maxima caused 
by spurious concavities, a balance measure 
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is introduced. Ei measures the balance of the histogram about the gray level g,. For 
spurious concavities, which usually lie only on one side of the histogram, the values 
of E; will be small. Thus, spurious concavities can be eliminated by ignoring 
maxima of h - h when Ei is small. The remaining maxima indicate possible 
locations for thresholding, but they may not be optimal. Other gray levels near these 
maxima should also be considered for possible improvement. 

E. Entropic Methods 

In these recently developed methods, the gray level histogram is considered as a 
I-symbol source. The optimal threshold is obtained by applying information theory. 

(i) Pun Methods 

In this subsection, two recently developed algorithms proposed by Pun [32,33] 
will be discussed. 

Let t be the value of the threshold and define two a posteriori entropies [l] 

where H,: and H; can be regarded, respectively, as measures of the a posteriori 
information associated with the black and white pixels after the thresholding. 

Knowing the a priori entropy of the gray level histogram, Pun [32] proposes an 
algorithm to determine the optimal threshold by maximizing the upper bound of the 
a posteriori entropy 

H’ = H,: -I- H;. 

Pun [32] has shown the maxir&in g H’ is equivalent to maximizing the evaluation 
function 

4 + l-- [ 1 log,U - PA 
4 log,m~~p,+l~.--~ p,-d 

with respect to t, where 

Ht = - i p;log,p;, 
i=o 
I-l 

HT = - C PihePi> 
i=O 

‘t’ CPi’ 
i=O 
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In his second algorithm, Pun [33] proposes the use of an anisotropy coefficient, (Y, 
in thresholding, where 

i=o a= I-1 
1;oPi10gt3 Pi ’ 

and m  is the smallest integer such that 

5 p; 2 0.5. 
i=O 

The optimal threshold t* is chosen such that 

However, Kapur et al. [16] have shown that this algorithm will always threshold an 
image with t* 2 m, thus introducing unnecessary bias. 

(ii) Kapur, Sahoo, and Wong Method 

In this method [16], two probability distributions (e.g., object distribution and 
background distribution) are derived from the original gray level distribution of the 
image as follows: 

PO Pl Pt -- 
P, ’ P, ’ . * . ’ p, 

and 

Pt+l Pt+2 P/-l -- 
1 - P, ’ 1 - P, ‘. ..’ 1 - P, ’ 

where t is the value of the threshold and P( = &opi. Define 

H,(t) = - i Flog, ; ) 
i=o t i i t 

l-l 

H,(t) = - c Alog, & . 
i=t+l ’ - ‘t i i t 

Then the optimal threshold t* is defined as the gray level which maximizes 
H,,(t) + H,,,(t), that is, 
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(iii) Johannsen and Bille Method 
This method [15] uses the entropy of the gray level histogram of the digital image. 

Essentially, it divides the set of gray levels into two parts so as to minimize the 
interdependence (in information theoretic sense) between them. The Joharmsen and 
Bille method chooses the threshold value t* from the relation 

t* = Argzg{S(t) + g(t)}, 

where 

and 

i=l 

F. Moment-Preserving Method 

l-l 

? i=:lpi i II . 

In this method [40], the threshold values are computed deterministically in such a 
way that the moments of an image to be thresholded are preserved in the output 
(binary) image. This i” moment mi is calculated as 

m, = i ‘$ g’h(g), i = 1,2,3, 
g-0 

where n is the total number of pixels in the image. The threshold value t* is 
obtained from the gray level histogram of the image by choosing t* as the PO-tile, 
where p. is given by 

z - ml 

PO = (c; - &,y2 

and 

m1m3 - rn$ ml1232 - m3 
co = 

m2 - rnf 2 Cl = 
m2 - rnf 3 

z+ 0 c; - 4coy2 - Cl). 
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G. Minimum Error Method 
In the minimum error method [19], the gray level histogram is viewed as an 

estimate of the probability density function P(g) of the mixture population 
comprising of the gray levels of the object and background pixels. It is usually 
assumed that each of the two components p(gli) of the mixture is normally 
distributed with mean pi and standard deviation ai and a priori probability Pi, that 
is 

P(g) = i P,P(gli)9 
r=l 

where 

PW) = & I 
exp( - (gi-$i)). 

The threshold value can be selected by solving the quadratic equation 

(g - PA2 2log,P, (g + 1ogJJ: - P212 - = - 0: 4 + 1ogJJ; 2log,P,. 

However, the parameters pi, u/, and Pi (i = 1,2) of the mixture density p(g) 
associated with an image to be thresholded are not usually known. To overcome the 
difficulty of estimating these unknown parameters, Kittler and Illingworth [19] 
introduced a criterion function J(t), which is given by 

J(t) = 1 + 2{plw%e%w + p2(tbgea,(t)~ 

-2{wbg,pl(t) + p20)1%920)~~ 

where 

t I-1 

40) = c h(g), P,(t) = c h(g) 
g=o g=t+l 

l%(t) = 

and 

i 

l-l 

c (g - dt))2h(d 

&) = g=t+l 

P,(t) 
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The optimal threshold is obtained by minimizing J(t), that is, by finding 

t* = Arg%zJ(t). 

3. GLOBAL THRESHOLDING: REGION DEPENDENT TECHNIQUES 

A. Histogram Transformation Methods 
The methods described here do not select a threshold directly. Rather, they 

transform the gray level histogram of the image into one with deeper valleys and 
sharper peaks so that the mode method described in Section 2B can be applied to 
determine the threshold. A common feature among these methods is that a new 
histogram is obtained by weighting the pixels of the image according to the local 
property of the pixels. Also, these methods assume that each of the images 
considered consists of objects and background, both of which have a unimodal gray 
level distribution. 

Mason et al. [23] propose the use of the edge operator (e.g., the Laplacian, the 
Roberts cross, etc.) for weighting. According to their method, the values of the edge 
operator are small for pixels in homogeneous regions and these pixels are given 
more weight. However, the values of the edge operator are large for pixels in the 
neighborhood of an edge and these pixels are given less weight. The weight can be 
computed as l/(1 + A’), where A is the edge value at a given pixel. As a result of 
this weighting process, the new gray level histogram will have sharper peaks and 
deeper valleys. 

In 1965, Katz [17] points out that since the pixels in the neighborhood of an edge 
have higher edge values, the gray level histogram for these pixels should have a 
single peak at a gray level between the object and the background gray levels. This 
gray level is, therefore, a suitable choice of the threshold value. This has also been 
studied by We&a and Rosenfeld [46]. Several variations of the above method have 
been proposed [45,43,49]. Weszka and Rosenfeld [48] unifies them by using a gray 
level versus edge value scatter plot. 

Another method for histogram transformation that draws our attention is the 
quadtree method [51]. This method is based on the fact that the standard deviation 
of the gray levels in a homogeneous region is small, whereas that in a nonhomoge- 
neous region is high. Thus, regions whose gray level standard deviations are high 
can be divided into smaller, homogeneous regions. Starting from the original image, 
the quadtree method divides the image into quadrants if its gray level standard 
deviation exceeds a predefined value. The process is then repeated for each quadrant. 
This yields a decomposition of the original image into blocks with lower gray level 
standard deviation so that it is reasonable to approximate the gray level of each 
block by its mean gray level. The resulting image is called the Q-image. Because of 
the homogeneity of each block, the gray level histogram of the Q-image will have 
sharper peaks and deeper valleys. 

B. Methods Based on Second-Order Gray Level Statistics 
One of the drawbacks of the point-dependent thresholding methods is that they 

depend solely on the first-order gray level statistics (i.e., the histogram) of the image. 
The methods to be described here are based on the second-order gray level statistics 
of the image. 
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(i) Co-occurrence Matrix Method 

The co-occurrence matrix is introduced by Haralick for texture analysis [14]. In 
general, a co-occurrence matrix MCfl,+) is one whose entries are the relative 
frequency of occurrence for two neighboring pixels with gray levels i and j, 
separated by distance d and with orientation +. Obviously, the number of such 
matrices can be quite large, depending on the choice of d and 9. In Ahuja and 
Rosenfeld [2], the gray level co-occurrence matrix is defined as 

that is, the (i, j) element of M  is the frequency that gray level i occurs as a 
4-neighbor of gray level j. 

Because of homogeneity, pixels interior to the objects or background should 
contribute mainly to the near-diagonal entries of M . Also, pixels near an edge 
should contribute mainly to the off-diagonal entries of M  because of the gray level 
change near an edge. Therefore, the matrix M  can be used to define two new 
histograms: 

(a) A histogram based on the near-diagonal entries of M . This histogram 
should have a deep valley between the object and the background gray levels. 

(b) A histogram based on the off-diagonal entries of M . This histogram should 
have a sharp peak between the object and the background gray levels. 

A threshold for the image can then be chosen from the gray level range in which 
the valley in (a) overlaps with the peak in (b). 

(ii) (Gray Level, Local Average Gray Level) Scatter Plot Method 

This method [18] is quite similar to the co-occurrence matrix method discussed in 
the previous section. In a (gray level, local average gray level) scatter plot, the origin 
is defined as the upper left-hand comer, the gray level increases from left to right, 
and the local average gray level, taken over a window, increases from top to bottom. 
The intensity of a point on this plot is proportional to the occurrence frequency of 
the corresponding pair (gray level, local average gray level). In Kirby and Rosenfeld 
[18], the local averages are taken over a 3 x 3 square window. 

The near-diagonal entries in the scatter plot represent pixels whose local average 
gray level is close to the gray level; such pixels are likely to be interior to the objects 
or background because of homogeneity. Thus, the histogram of the gray levels of 
these pixels should have a deep valley. On the other hand, the off-diagonal entries in 
the scatter plot represent pixels near an edge, so the gray level histogram obtained 
from these pixels should have a sharp peak. As in the co-occurrence matrix method, 
a threshold can be determined from the gray level range in which the valley and the 
peak of the above histogram overlap with each other. 

C. Deravi and Pal Method 

In this method [9], transition matrices similar to the co-occurrence matrix 
discussed in Section 3B(i) are used to define two “interaction measures” for 
threshold selection. The optimal threshold is determined by m inimizing these 
interaction measures. 
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Using the notations of Section 3B(i), the transition matrices defined in [9] can be 
written as 

Th = M&O), 
T, = JqlJn,2)7 

Tub= T,+ T,,. 

Any one of the above transition matrices can be used in threshold selection and we 
shall refer to the transition matrix as T in the following discussion. It was reported 
in [9] that the results obtained with different transition matrices do not differ 
significantly. 

Let qj be the (i, j) entry of T and t be a threshold dividing the set of gray levels 
into two classes: C, = (0, 1, . . . , t}andC,={t+l,t+2,...,1-l}.ThenTcan 
be partitioned into four regions defined by the following parameters: 

a= i &j, 

I-1 l-l 

b= C C Tj> 
i=O j=CJ i=t+l j=t+l 

c= i ‘g 71j, 

I-1 r 

d= c c qj. 
i=O j=t+l i=f+l j=O 

Thus a, b, c, and d represent the total number of transitions within Co, within C,, 
from C, to C,, and from C, to C,, respectively. The joint and conditional 
probabilities of the transition between Co and C, can be estimated by 

c+d 
P,(t) = 

a+b+c+d’ 

and 

Deravi and Pal [9] call P,(t) and P,(t) interaction measures. They also point out 
that P,(t) is similar to the “business measure” in [47] and that P,(t) does not 
depend directly on the histogram. The optimal threshold, t*, is obtained by 
maximizing either one of the above interaction measures. 

D. Relaxation Metho& 

The idea of relaxation was introduced by Southwell [38,39] to improve the 
convergence of recursive solution for system of linear equations. In image segmenta- 
tion, relaxation is applied as follows. The pixels of an image are first probabihsti- 
tally classified into “light” and “dark” classes based on their gray levels. Then the 
probability of each pixel is adjusted according to the probabilities of the neighbor- 
ing pixels. This adjustment process is iterated so that “light probabilities” (resp. 
“dark probabilities”) become very high for pixels belonging to the light (resp. dark) 
regions. An attractive feature of these relaxation methods is that they are p 
processing techniques, as opposed to the sequential techniques discussed so far. 
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(i) Initial Clksdjchvs;dlkjhv;sldjkhvlassijkation 
For the initial classification of the pixels, Rosenfeld and Smith [36] have sug- 

gested the following method. Let d and 1 be the darkest and lightest gray levels, and 
gj be the gray level of a pixel xi. Then, for xi, let 

l - gi 

Piqdark = - I-d’ 

and 

gi - d -- &i&t- 1-d’ 

Though the above method is simple, it does not work in cases where the object 
and background gray levels do not lie on different halves of the gray level histogram. 
To avoid this problem, Rosenfeld and Smith [36] suggest another initialization 
scheme. Let m  be the mean gray level. Then, if gj > m , let 

Piq light 
1 1 gi-m 

=2+-- 2 l-m’ 

and if gi I m , let 

1 lm-g, 
p!&&=Z+--- 

2 m-d’ 

Fekete et al. [ll] suggest an approach in which they assume the histogram can be 
divided into two Gaussian subpopulations so that the gray level distribution can be 
written as the sum of two Gaussian distributions. The parameters of these Gaussian 
distributions are determined by a method suggested in [7]. They find that faster 
convergence of the relaxation process can be obtained with this method. 

(ii) Iterative Updating of Probabilities 
As previously mentioned, the updating process consists of adjusting the probabih- 

ties of each pixel, based on neighboring probabilities. Let A be the set of class labels 
(e.g., the classes of dark and light pixels). Then, to direct the class updating, a 
compatibility coefficient, rij(X, X’), between a pixel xi with label X E A and 
another pixel xi with label X’ E A is defined such that 

-1 if A and A’ are incompatible. 
rij(X, A’) = 0 if xi and xj are independent. 

1 if X and A’ are compatible. 



244 SAHOO ET AL 

Zucker et al. [52] propose the following equation for updating the probabilities: 

p”+‘(h) = P,k(Nl + dY~)l 
&Pm[l + %v)l ’ 

4fCA) = $ C C rij(A, A’)pj(X’), 
x,eN, A’sA 

where N, is the 8-neighbor of xi. 
However, Pavlidis [29] has shown that p:(X) always changes during the updating, 

therefore the above scheme violates the natural expectation that the labeling should 
not change if neighboring pixels are independent. Peleg [30] resolves this theoretical 
flaw by suggesting the following updating equation: 

E. Gradient Relaxation Methods 
In gradient relaxation, the optimal labeling scheme is determined by maximizing 

a criterion function with gradient optimization. 
Let A, and A, be the labels of the classes of light and dark pixels, let 

UP,(~), P~@~>I~~ i = 61 , . . . ,l - l} be the set of probability vectors associated 
with the gray levels and let {[qi(X,), qi(X2)lT, i = O,l,. . . , I - l} be the set of 
compatibility vectors, where qi(Xk) = iCX, E N, p&X,), N, is the 8-neighbor of the 
pixel xi. Bhanu and Feugeras [4] suggest that the optimal labeling scheme for 
images with unimodal gray level distribution can be determined by 

maximizing 
I-1 

c(P> ‘= C PTCA)qiCA) subject to 
i=o 

P;(X) E K:= 
i 

P(A) = (p(h), P(&>)~P($> 2 0, i P@,) = 1 
j=l 

They point out that maximizing C(p) is equivalent to reducing the inconsistency 
and ambiguity of the pixel labeling. 

Here we suggest a similar method that uses a different criterion function derived 
from information theory. In this method the optimal labeling scheme is determined 
by 

I-1 

maximizing *(P) ‘= C z(Pi, 4i) 
i=O 

subject to pi E K. 
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The quantity I( pi, qi) is defined as 

I( Pi3 4i) = i Pi(‘j 

Pi(‘j) 

i I 

___ 

j=l e 4iCxj> . 

F. Other Methods 
Thresholding techniques for optical character recognition systems have also 

received much attention. Because of the wide range of print quality distortions over 
a single document, a combination of threshold operators is often used, with each 
operator sensitive to a different type of distortion. Bartz [3], for example, combines 
four linear threshold operators to form a single threshold. An example of these 
operators is T  = ku + c, where u is the average contrast over previously scanned 
characters, and k and c are optimizing parameters. Wolfe [50] suggests a two-step 
procedure to deal with the problem of shading in printed characters. During the first 
step, the mean gray level of each pixel is computed by averaging the gray levels over 
a 4 x 4 window. A pixel X is considered as belonging to a character if its mean 
gray level is darker than the mean gray levels of the two pixels whose orientations 
differ by 180’ and are distance 8 apart. The second step is similar to the first step, 
but a larger window is used. 

In Ullmann [41], the threshold of a pixel X is selected based on the gray levels in 
a 5 x 5 window, W, of X. Only the pixels which are labeled n contribute to the 
threshold decision (Fig. 1). 

Two experimental rules, to be described later, are used to determine the threshold 
of X. Let n, be the highest (brightest) gray level in W. Then rule (1) is applied if 
n x < 40 and rule (2) is applied when n x > 40. The two rules are: 

(1) Label X as an object point if for some point n in W, we have g(X) - g(n) 
< 7, where g( -) means the gray level of (e) and r is some predefined threshold; 
otherwise label it as a background point. 

(2) Label X as an object point if for at least one n in W, we have g(X) < 
g(n)/p, where 1-1 is some predefined constant; otherwise label it as a background 
point. 

Morrin [25] uses gray level versus gradient value plots to convert gray scale 
images with superior resolution and contrast for thresholding. Panda [28] suggests a 
method in which the threshold applied at a point depends on both the gray level and 
the edge value of that point. Some results and comparisons are given in [28]. 

0 n n n 0 

n n 0 II n 

n 0 x 0 n 

n n Cl 0 n 

0 n n n 0 

FIG. 1. 5 x 5 window used in Ullmann [41]. 



246 SAHOO ET AL. 

4. LOCAL THRESHOLDING 

In local thresholding, the original image is partitioned into smaller subimages and 
a threshold is determined for each of the subimages. This yields a thresholded image 
with gray level discontinuities at the boundaries of two different subimages. The 
threshold of a region can be determined by either the point-dependent method or 
the region-dependent method. A smoothing technique is then applied to eliminate 
the discontinuities. 

Chow and Kaneko [7, S] suggest the use of a 7 X 7 window for local thresholding. 
In their method, the original image is divided into 7 x 7 subimages and a threshold 
is computed for each subimage. However, a threshold is not computed for sub- 
images with unimodal gray level histogram. Thresholds for such subimages are 
interpolated from neighboring subimages. For a bimodal subimage, the threshold is 
computed as follows. First the gray level histogram for a subimage is approximated 
by a sum of two Gaussian distributions, then the threshold is obtained by minimiz- 
ing the classification error with respect to the threshold value. Some experiments on 
this method were done in [26]. 

For X-ray angiograms Fernando and Monro [12] suggest a local thresholding 
method. Global thresholding techniques have been found to be unsatisfactory for 
these images which are usually unimodal with a very narrow peak. According to this 
new method, the original image is partitioned with 16 nonoverlapping subimages 
and the entropic thresholding technique of Pun [32] is applied to determine the 
threshold value for each of these subimages. Finally, the entire thresholded image is 
processed by a low-pass filter to eliminate the gray level discontinuities at the 
boundaries of subimages. 

5. MULTITHRESHOLDING METHODS 

Many global thresholding methods, such as Ostu [27], Pun [32,33], Kapur et al. 
[16], moment preserving [40], minimum error [19] can be extended to the case of 
multithresholding. In this section we discuss three multithresholding methods which 
are not included in the earlier sections of this paper. 

A. Amplitude Segmentation Method 
This method was proposed by Boukharouba et al. [5] and uses the intrinsic 

properties of cumulative distribution function of an image to be thresholded. In this 
method, the curvature of the distribution function is examined to obtain informa- 
tion regarding the threshold values. The distribution function F(k) at point k is 
given by 

k 

F(k) = “1” 
‘h(g) ’ 
g=o 

The curvature of F is then defined by 

C(x) = F’(x)[l + (P(x))‘] -3’2, 
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where F’ and F” are the first and second derivatives of F, respectively. It is pointed 
out in [5] that C(x) is noisy and oscillatory and should be smoothed and approxi- 
mated for use in thresholding. The zeros of the curvature determines the thresholds 
as well as the gray level to be assigned to each class. 

B. Wang and Haralick Method 
This is a recursive technique [42] for multiple threshold selection on digital 

images. In this method, pixels are first classified as edge pixels or nonedge pixels. 
Edge pixels are then classified, on the basis of their neighborhoods, as being 
relatively dark or relatively light. A histogram of the gray levels is obtained for those 
pixels which are edge pixels and relatively dark, and another histogram is obtained 
for those pixels which are edge pixels and relatively light. A threshold is selected 
based on the gray level intensity value corresponding to one of the highest peaks 
from the two histograms. To get multiple thresholds, the procedure is recursively 
applied using only those pixels whose intensities are smaller than threshold first and 
then using only those pixels whose intensities are larger than the threshold. 

C. Uniform Contrast Method 
This is a recursive threshold selection method proposed by Kohler [21]. The 

method is based on the following idea. The optimum threshold for segmentation of 
the image is that threshold which detects more high contrast edges and fewer low 
contrast edges than any other threshold [21]. In this method, a histogram of the 
average contrast p(t) for each possible threshold t is created and the highest peak 
in the histogram corresponds to the optimal threshold. The average contrast p(t) is 
calculated from the relation 

c(t) CL(t) = - N(t) 
with p(t) = 0 if N(t) = 0 and C(t) is the total contrast detected by threshold t, and 
N(t) is the number of edges detected by t. For multithresholding any initial 
threshold is first selected and then a new histogram of p(t) is computed by 
removing the contribution of the already detected edges by the initial threshold. 
This procedure is continued until the maximum average contrast for any threshold 
fell below some m inimum average contrast criterion 8 > 1. 

6. EXPERIMENTAL RESULTS 

Not all the methods surveyed in this paper are automatic in nature (i.e., they 
require no human interactions). Some require user’s feedback since unique optimal 
threshold is not possible. In local thresholding methods, the image is divided into 
smaller subimages and suitable global methods are adopted to compute the optimal 
thresholds for each subimage. It seems that global methods are frequently used for 
threshold&g. For this reason, we intend to evaluate some of the global thresholding 
methods, namely the Ostu method [27], the Pun method [32], the Johannsen and 
Bille Method [15], the method of Kapur et al. [16], the co-occurrence matrix 
method [2], the histogram concavity analysis method [35], the method due to Deravi 
and Pal [9], the moments preserving method [40], and the m inimum error method 



FIG. 2. (a) Digitized cameraman image; (b) histogram of cameraman image. 

[19]. These methods are considered for a comparative study since they are automatic 
and in most cases do not require a subjective judgement for finding the best 
threshold from a set of optimal threshold values. The above mentioned methods 
are applied to three images, “cameraman”, the “building”, and the “model”. The 
cameraman image is digitized from the printed version of the same image in [32]. 
This is done with a raster of 415 X 395 and the quantization is 256 gray levels. The 
digitized image and its gray level histogram are shown in Fig. 2. The building image 
is also digitized from the printed version of the same image in [32] with a raster of 
411 x 403 and quantized to 256 gray levels. The image of the model is digitized 
with a raster of 321 X 314 and quantized to 256 levels. The building and the image 
of the model are shown in Figs. 3 and 4 along with their gray level histograms. The 
threshold values obtained by methods considered above are presented in Table 1. 

For the co-occurrence matrix method the distance between cells d was chosen to 
be 1 and 5% of the elements of the M matrix that lie farthest from the diagonal was 
projected onto the diagonal. Incidentally a threshold value of 63 was found for all 
three images. This value did not change when 10% of the elements instead of 5% was 
used. However, when d changed from 1 to 2 (resp. 3) the threshold values for the 

FIG. 3. (a) Digitized building image; (b) histogram of building image. 
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FIG. 4. (a) Digitized image of the model; (b) histogram of the model image. 

cameraman and the building images did not change, but the threshold value of the 
model image changed to 30 (resp. 33). On changing the percentage of elements of M  
projected onto the diagonal to 1% and 2% while keeping d values to 2 and 3, 
respectively, we have obtained a threshold value 63 in both cases. Thus, whenever 
higher values of d are used, it is advisable to decrease the percentage of elements of 
A4 that lie farthest from the diagonal and projected onto the diagonal. 

The Deravi and Pal method [9] was implemented for the cameraman picture only. 
With their method, two local m inima were found, one at 45 and the other at 116. 
Since thresholding at 45 does not provide a better binary image we select 116 as the 
optimal threshold value. Figures 5-7 show the binary images obtained by the 
thresholding methods considered in this section. 

7. MEASURES FOR EVALUATING THRESHOLDING METHODS 

In digital images, uniformity and shape of the objects play great roles in 
separating objects from the background. The amount of agreement of these two 
aspects of every binary image with the real image has been evaluated for the three 
test images considered in the previous section. The uniformity measure used in this 

TABLE 1 
Optimal Threshold Value for the Set of Test Images 

Method 

Co-occurrence matrix 
Deravi & Pal 
Histogram concavity 
Johamwn & Bille 
Kapur et al. 
Minimum error 
Moment-preserving 
Ostu 
b 1321 

Optimal threshold value 
Cameraman Building Model 

63 63 63 
116 
127 47 127 

75 79 114 
123 69 81 
111 37 113 

91 76 76 
86 73 91 

131 28 63 
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FIG. 5. Binary images of the cameraman: (a) co-occurrence matrix method (t’ = 63); (b) Deravi and 
Pal method (t* = 116); (c) histogram concavity method (t* = 127); (d) Johannsen and Bille method 
(t* = 75); (e) Kapur, Sahoo, and Wong method (t* = 123); (f) minimum error method (t* = 111): (8) 
moment-preserving method (z* = 91); (h) Ostu method (r* = 86); (i) Pun method [32] (t* = 131). 

paper is adopted from Levine and Nazif [22]. For a given threshold value t, the 
uniformity measure U(t) is given by 

u1’ + (72” 
U(t) = 1 - --y--y 

where 

Ri = Segmented region i 

f (x, y) = The gray level of the pixel (x, y) 

c f(w) 
(x>Y)ER, 

Pi = Ai ’ 

Ai = Number of pixels in R,, i = 1,2, 
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FIG. 5.-Continued 

and 

C = A normalization factor. 

Levine and Nazif [22] have included a weighting factor in the calculation of 
uniformity measure U for images with more than two regions. 

A measure, called shape meusure S, is used for the measurement of the shape of 
the object in the test images. The measure S for a given image is calculated as 
follows: (a) assign a generalized gradient value A(x, y) to every pixel (x, y); (b) if 
the pixel (x, y) has a gray value higher than the average of its neighbors then assign 
the “ + ” sign to the generalized gradient value A(x, y), else assign the “ - ” value; 



FIG. 6. Binary images of the building: (a) co-occurrence matrix method (t* = 63); (b) histogram 
concavity method (t* = 47); (c) Johannsen and Bille method (t* = 79); (d) Kapur, Sahoo, and Wong 
method (t* = 69); (e) minimum error method (f* = 37): (f) moment-preserving method (t* = 76): (g) 
Ostu method (t* = 73); (h) Pun method [32] (t* = 28). 

(c) compute the shape measure S by using the formula 

where frqx, y) is the average gray value in the neighborhood iV(x, y), t is the 
threshold value of the image, C is a normalization factor, and 

W(x) = ( -: ifx20 
ifx < 0. 

The computation of the generalized gradient value A(x, y) of the pixel (x, y) is 
carried out using the formula 

i 0; + fi~,(D, + D,>- fiD,(~, - 0,) 1 l/2 
. 

k=l 

where 

D, =f(x+ Ly)-f(x - Lv), 

D, = f(x, Y - 1) - f(x> Y + l), 
D, =f(x + 1, y  + 1) -f(x - 1, y - I), 

D4 = f(x + 1, y  - 1) - f(x - 1, y + 1). 

Using both measures, the threshold value obtained according to each me&i& 
mentioned earlier are evaluated. Tables 2a, 2b and 2c show the results of this 
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FIG. 6.-Continued 

evaluation. Note that these values are renormalized according to the best possible 
threshold for each measure and the rank of each method is indicated within the 
square bracket. 

8. DISCUSSION OF EVALUATION RESULTS 

Analyzing Table 2a, we find that methods of Ostu, moment-preserving, and 
Johannsen and Bille are better threshold selection methods for the cameraman 
image with regards to region uniformity and shape measure. For bimodal images 
(see Table 3), the optimal values of uniformity and shape measure do not differ 
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FIG. 7. Binary images of the model: (a) co-occurrence matrix method (t* = 63); (b) histogram 
concavity method (t* = 127); (c) Joharmsen and Bille method (1: = 114); (d) Kapur, Sahoo, and Wong 
method (t* = 81); (e) minimum error method (t* = 113); (f) moment-preserving method (I* = 76); (g) 
Ostu method (t* = 91). 

significantly. Thus for the cameraman image, if a particular method is found to be 
good it will also be found equally good with respect to the shape measure. 
Therefore, the above mentioned methods in Table 2a have the same rank with 
respect to uniformity as well as shape. On the whole, the evaluation results on this 
image for the above mentioned methods vary very little. 

The building image does not have a distinct birnodal gray level histogram. Thus, 
unlike the cameraman image, the Ostu method (see Table 2b) ranks third according 
to shape measure and first with respect to region uniformity measure when applied 
to the building image. Moment-preserving method ranks second according to 
uniformity and ranks first according to shape measure. The performances of 
Johannsen and Bille and Kapur et al. methods are next to the Ostu and moment- 
preserving method. 

Notice that the image of the model does not have a bimodal histogram. For this 
image, we find (refer to Table 2c) that Ostu method ranks fhst with respect to 
uniformity and ranks fourth with respect to the shape measure. The co-occurrence 
matrix method is found to have first rank according to the shape measure and 
seventh rank with respect to the uniformity measure. The method due to Kapur et 
al. ranks second with respect to uniformity and third according to shape. This result 
shows that the Kapur et al. method is fairly consistent with both shape and 
uniformity measure for this type of images. The co-occurrence matrix method is 
shape oriented and the Ostu method is uniformity oriented. Thus for the image of 
the model, which does not have a bimodal histogram, the co-occurrence matrix 
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FIG. ?‘-Continued 

method is found to be a good method if only the shape measure is considered, 
whereas the Ostu method is good on the basis of uniformity measure alone. 

From this objective evaluation (from Tables 2a, 2b, and 2c), we find the Ostu 
method, which is based on discriminant analysis to be one of the better thresholding 
methods despite of its many short commings (see [20,34]). Since our measures for 
evaluating a thresholding method are based on uniformity and the shape only, it is 
not altogether surprising to find Ostu method as one of the better methods. The 
moment-preserving method of Tsai is found to be comparable to the Ostu method. 
The performance of methods such as Johannsen and Bille as well as Kapur et al. is 
almost next to Ostu and the moment-preserving methods. 

The thresholded images obtained by various methods (listed in Table 1) reveal 
valuable information regarding the thresholding techniques. We incorporate this 

Method 

TABLE 2a 
Evaluation Results for Cameraman Image 

Threshold Uniformity (U) Shape (S) 

Co-occurrence matrix 63 
Deravi & Pal 116 
Histogram concavity 127 
Johannsen & Bille 75 
Kapur et al. 123 
Minimum error 111 
Moment-preserving 91 
ostu 86 
b ~321 131 

0.7121 [5] 
0.6190 [6] 
0.3556 [8] 
0.9089 [3] 
0.4775 [7] 
0.7133 [4] 
0.9911 [2] 
0.9990 (11 
0.2205 [9] 

0.7471 [4] 
0.5740 [6] 
0.3387 [8] 
0.9452 [3] 
0.4148 [7] 
0.6951 [5] 
0.9839 [2] 
l.oooo [l] 
0.2390 [9] 
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TABLE 2b 
Evaluation Results for Building Image 

Method Threshold Uniformity (U) 

Co-occurrence matrix 63 
Histogram concavity 41 
Johannsen & Bille 19 
Kapur et al. 69 
Minimum error 31 
Moment-preserving 16 
Ostu 73 
Pun [32] 28 

0.9098 [5] 
0.5889 [6] 
0.9833 [3] 
0.9792 [4] 
0.3820 [7] 
0.9980 [2] 
0.9986 [l] 
0.1988 [8] 

TABLE 2c 
Evaluation Results for Image of Model 

Method Threshold 

Co-occurrence matrix 63 
Histogram concavity 127 
Johannsen & Bille 114 
Kapur et al. 81 
Minimum error 113 
Moment-preserving 76 
Ostu 91 
Pun [32] 63 

Uniformity (U) 

0.5483 [7] 
0.6246 [6] 
0.8334 [5] 
0.9192 [2] 
0.8465 [3] 
0.8445 [4] 
0.9986 [I] 
0.5483 [7] 

Shape (S) 

0.8863 [5] 
0.5597 [6] 
0.9990 [2] 
0.9647 [4] 
0.2987 [7] 
0.9995 [l] 
0.9931 [3] 
0.0131 [X] 

Shape (S) 

0.9597 [l] 
0.2775 [7] 
0.4543 [6] 
0.7636 [3] 
0.4682 [5] 
0.7872 [2] 
0.7418 [4] 
0.9597 [l] 

visual information to supplement our findings. For visual analysis of the binary 
images, it seems reasonable to consider some important features such as facial 
details and camera of the cameraman picture, edges of the building on the 
right-hand side of the building image, and facial and hair features in the model 
image. Along with these observations, one should also consider the amount of 
distortion and loss of information in the thresholded image. A close look at the 
binary images of the cameraman in Fig. 5, we observe that methods such as Pun 
(Fig. 5i), histogram concavity (Fig. 5c) and co-occurrence matrix (Fig. 5a) do not 
provide a good threshold for this image. This can also be observed from Table 2a. 
We also observe that the co-occurrence matrix method yields a binary image in 
which the details of the face and the camera of the cameraman are lost, whereas 
Pun’s and histogram concavity methods yield binary images with distortions. Also, 
Ostu method and moment-preserving method do not retain the details of the face in 
the cameraman image. The methods which retain the facial details and other 
valuable information of the image are the Kapur et al. method and the m inimum 
error method. Notice that the Kapur et aE. method ranks seven (in Table 2a) 
according to uniformity as well as shape measure, but it gives a good binary image, 
which retains the facial details of the cameraman. 

A similar examination of the images in Fig. 6 reveals that the moment-preserving 
(Fig. 6f), co-occurrence matrix (Fig. 6a), Ostu (Fig. 6h), Kapur et al. (Fig. 6d), 
Johannsen and Bille (Fig. 6c) methods provide reasonably good threshold values for 
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TABLE 3 
Optimal Value for the Uniformity and Shape Measures 

- 
Measure Cameraman Building Model 

-. 
Uoiformity 87 74 93 
Shape 86 78 57 

FIG. 8. Binary images of the cameraman: (a) optimal uniformity (t* = 87); (b) optimal shape 
(r* = 86). 

the building picture. Among these methods, the Johannsen and Bille method and 
the moment-preserving method yield good binary images. Regarding the binary 
images in Fig. 7, we observe that the Kapur et al. method and the moment-preserv- 
ing method are better threshold selection techniques. For the same image, the Ostu 
method also provides a good threshold value. However, it is not as good as the two 
methods mentioned. 

Thus, from the visual aspect of the binary images as well as the objective 
evaluation based on the uniformity and shape measures, we find that Johannsen and 
Bille, Kapur et al., moment-preserving, and Ostu methods are good thresholding 
methods. In most cases, Pun [32], histogram concavity, and m inimum error methods 
do not render good performance in comparison to other methods mentioned in this 
section. In an earlier study [12], unsatisfactory performance of the Pun method [32] 
was observed by Fernando and Monro. 

9. COMMENTS AND CONCLUSION 

The indicators used in this paper for evaluating an automatic thresholding 
method are shape meaSure and uniformity measure. Table 3 presents the gray levels 
which optimize the uniformity and shape measure for the test images. The set of 
digital test images, when binarized at the gray levels where S and U attain 
maximum, are shown in Figs. 8, 9, and 10. From these binary images it is evident 
that one may use these measures for image thresholding. 

In summary, we have presented a survey of various thresholding methods and 
evaluated the performance of some global methods which are automatic in nature. 
All the methods described here optimize some criterion functions and provide 



FIG. 10. Binary images of the model: (a) optimal uniformity (I* = 93); (b) optimal shape (t* = 57). 

justifications for such optimization. We only investigate how the optimal values 
behave corresponding to the uniformity and shape measures to a given set of test 
images. From this study, we conclude that for the above set of test images 
Johannsen and Bille, Kapur et al., Tsai’s moment-preserving, and Ostu methods are 
reasonably good thresholding methods if one demands more uniformity and better 
shape of the object in the binary image. However, whether the aforementioned 
methods, in general, will perform well or not remains open. 
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