
Fast Anisotropic Gauss Filtering

Jan-Mark Geusebroek?, Arnold W. M. Smeulders, and Joost van de Weijer

Intelligent Sensory Information Systems, Department of Computer Science,
University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands;

geusebroek@science.uva.nl

Abstract. We derive the decomposition of the anisotropic Gaussian in
a one dimensional Gauss filter in the x-direction followed by a one di-
mensional filter in a non-orthogonal direction ϕ. So also the anisotropic
Gaussian can be decomposed by dimension. This appears to be extremely
efficient from a computing perspective. An implementation scheme for
normal convolution and for recursive filtering is proposed. Also directed
derivative filters are demonstrated.
For the recursive implementation, filtering an 512 × 512 image is per-
formed within 65msec, independent of the standard deviations and ori-
entation of the filter. Accuracy of the filters is still reasonable when
compared to truncation error or recursive approximation error.
The anisotropic Gaussian filtering method allows fast calculation of edge
and ridge maps, with high spatial and angular accuracy. For tracking
applications, the normal anisotropic convolution scheme is more advan-
tageous, with applications in the detection of dashed lines in engineering
drawings. The recursive implementation is more attractive in feature
detection applications, for instance in affine invariant edge and ridge de-
tection in computer vision. The proposed computational filtering method
enables the practical applicability of orientation scale-space analysis.

1 Introduction

One of the most fundamental tasks in computer vision is the detection of edges
and lines in images. The detection of these directional structures is often based on
the local differential structure of the image. Canny’s edge detector examines the
magnitude of the first order image derivatives [3]. A well-founded approach for
line detection is given by [16, 20], where line structures are detected by examining
the eigenvectors of the Hessian matrix, the Hessian being given by the local
second order derivatives. Robust measurement of image derivatives is obtained
by convolution with Gaussian derivative filters, a well known result from scale-
space theory [6, 13, 15, 21].
The difficulty of edge and line detection is emphasized when the structures

run close together or cross each other, as is the case in engineering drawings or
two-dimensional projections of complex (3D) scenes. In these cases, isotropic fil-
tering strategies as used in e.g. [2, 3, 8, 12, 20] are not sufficient. Isotropic smooth-
ing causes parallel lines to be blurred into one single line. Crossing lines are not

? This work was supported by the ICES Multimedia Information Analysis Project



well detected by isotropic filters [17], due to the marginal orientation selectivity
of the Gaussian filter.

The task of edge and line detection is considered not trivial when disturbing
influences have to be ignored, like shadows and shading, gaps in dashed lines,
object borders locally blending together, partly occlusion of the object, or clut-
ter in the background. In these cases, one would often like to have a detection
method which ignores the distorting data aside the edge or line, while accu-
mulating evidence of the edge or line data along its orientation. Hence, taking
advantage of the anisotropic nature of lines and edges [1, 10].

The use of isotropic Gaussians is for historical reasons, imposed by simplicity
of derivation and efficiency in computation [13]. The assumption of isotropy
for front-end vision [6, 13, 15, 21] does not imply the scale-space operator to be
isotropic, rather imposes the complete sampling of all possible orientations of
the scene. The notion of orientation sampling suggest a combined scale and
orientation space [12, 14, 22]. For a linear orientation scale-space, the anisotropic
Gaussian is the best suited causal filter. We propose a method for fast filtering
by anisotropic Gaussian’s to construct an orientation scale-space.

Orientation analysis is often approached by steerable filters. Freeman and
Adelson [7] put forward the conditions under which a filter can be tuned to a
specific orientation by making a linear combination of basis filters. Their analy-
sis included orientation tuning of the xy-separable first order isotropic Gaussian
derivative filter. According to their framework, no exact basis exists for rotat-
ing an anisotropic Gaussian. Van Ginkel et al. proposed a deconvolution scheme
for improving the angular resolution of the Gaussian isotropic filter. Under a
linearity assumption on the input image, a steerable filter with good angular
resolution is obtained. The method involves a Fourier based deconvolution tech-
nique, which is of high computational complexity. Perona [17] derived a scheme
for generating a finite basis which approximates an anisotropic Gaussian. The
scheme allowed both steering and scaling of the anisotropic Gaussian. However,
the number of basis filters is large, and the basis filters are non-separable, re-
quiring high computational performance.

We show the anisotropic Gaussian filter to be separable along two direc-
tions, not necessarily orthogonal. One of the axes is in a fixed, but in a freely
selectable direction. The latter axis depends on the filter parameters (σu, σv, θ),
the standard deviations and orientation, respectively. We show the resulting
one-dimensional filters to be Gaussian filters. Hence, fast algorithms [4, 5, 23,
24] can be used to calculate the orientation smoothed image and its deriva-
tives. Van Vliet and Young propose [23, 24] a recursive implementation of one-
dimensional Gaussian filters. This is a great advantage over [5], as combining the
one-dimensional filters into two-dimensional Gaussians will not introduce bias
along the filter directions. The recursive filters need only 7 multiplications and
6 additions per pixel, independent of the standard deviation σ of the Gaussian
filter. Moreover, the filter coefficients are simple to calculate.

In this paper, we show the decomposition of the anisotropic Gaussian in
two Gaussian line filters in non orthogonal directions (Sect. 2). Choosing the



x-axis to decompose the filter along turns out to be extremely efficient from a
computing perspective. We combine the decomposition with the recursive algo-
rithms proposed in [23, 24], yielding a constant calculation time with respect to
the Gaussian scales and orientation (Sect. 3). We give timing results and com-
pare accuracy with two-dimensional convolution in Sect. 4. Implementation of
Gaussian derivative filters is given in Sect. 5.

2 Separation of Anisotropic Gaussian

A simple case of the isotropic Gaussian convolution filter in two dimensions is
given by

g◦(x, y;σ) =
1

2πσ2
exp

{

−1
2

(

x2 + y2

σ2

)}

. (1)

Anisotropy is obtained when scaling differently in the x- and y-direction. Then,
an elliptic Gaussian with axes aligned along the coordinate system (see Fig. 1a)
is given by

g⊥(x, y;σx, σy) =
1

2πσxσy
exp

{

−1
2

(

x2

σ2
x

+
y2

σ2
y

)}

. (2)

Rotation of the coordinate system (x, y) over θ,
(

u
v

)

=

[

cos θ sin θ
− sin θ cos θ

](

x
y

)

(3)

results in the general case of oriented anisotropic Gaussian (Fig. 1b),

gθ(x, y;σu, σv, θ) =

1

2πσuσv
exp

{

−1
2

(

(x cos θ + y sin θ)
2

σ2
u

+
(−x sin θ + y cos θ)

2

σ2
v

)}

(4)

the u-axis being in the direction of θ, and the v-axis being orthogonal to θ.
From standard Fourier theory we have the convolution theorem,

f(x, y) ∗ h(x, y) F⇔ F (ωx, ωy)H(ωx, ωy) . (5)

A linear filter is separable into two subsequent convolutions iff its Fourier trans-
form can be written as a multiplication of two functions, one depending on ωx,
the other depending on ωy,

h(x, y) = hx(x) ∗ hy(y) F⇔ H(ωx, ωy) = Hωx
(ωx)Hωy

(ωy) . (6)

The Fourier transform of gθ(.) (Eq. (4)) is given by

Gθ(ωx, ωy;σu, σv, θ) =

exp

{

−1
2

(

(ωx cos θ + ωy sin θ)
2
σ2
u + (−ωx sin θ + ωy cos θ)

2
σ2
v

)

}

. (7)



(a) (b) (c)

Fig. 1. Ellipse and its axes systems. An example of an anisotropic Gaussian with aspect
ratio 1:2 and orientation θ = π

4
. a. Cartesian xy-aligned Gaussian. b. Principal axes

uv-aligned Gaussian. c. uv-aligned Gaussian in a non-orthogonal xt-axes system. Axis
t is rotated over ϕ ≈ π

6
with respect to the x-axis.

The exponential is separable into two products if its argument is separable into
sums (ea+b = eaeb). From Eq. (7) it is easy to derive that the anisotropic Gaus-
sian may be separated along the major axes u and v with (u, v) given by Eq. (3),

Gθ(ωx, ωy;σu, σv, θ) = exp

{

−1
2

(

ωu
2σ2

u + ωv
2σ2

v

)

}

. (8)

As we are interested in a convenient basis from a computational perspective,
separation in u and v is uninteresting. What is needed is the decomposition
into a filter in the x-direction and a filter along another direction. Therefore, we
consider

(ωx cos θ + ωy sin θ)
2
σ2
u + (−ωx sin θ + ωy cos θ)

2
σ2
v (9)

as the quadratic form in ωx and ωy,

a11ωx
2 + 2a12ωxωy + a22ωy

2 (10)

where the coefficients are given by

a11 = σ2
u cos

2 θ + σ2
v sin

2 θ

a12 =
(

σ2
u − σ2

v

)

cos θ sin θ

a22 = σ2
v cos

2 θ + σ2
u sin

2 θ . (11)

We aim at separating the anisotropic Gaussian filter into a filter in the x-
direction, followed by a filter along a line t : y = x tanϕ,

f(x, y) ∗ h(x, y) = f(x, y) ∗ hx(x) ∗ hϕ(t) F⇔
F (ωx, ωy)H(ωx, ωy) = F (ωx, ωy)Hx(ωx)Hϕ(ωϕ) (12)



To achieve our goal, we collect in Eq. (10) all terms dependent on ωy and separate
out all terms independent of ωy. Hence, Eq. (10) may be rewritten as

(

a11 −
a12

2

a22

)

ωx
2 + a22

(

ωy +
a12

a22

ωx

)2

. (13)

Substitution in Eq. (7) yields

Gθ(ωx, ωy;σu, σv, θ) =

exp

{

−1
2

(

(

a11 −
a12

2

a22

)

ωx
2 + a22

(

ωy +
a12

a22

ωx

)2
)}

. (14)

Separation of the exponential sum results in

Gθ(ωx, ωy;σu, σv, θ) =

exp

{

−1
2

(

a11 −
a12

2

a22

)

ωx
2

}

exp

{

−1
2
a22

(

ωy +
a12

a22

ωx

)2
}

. (15)

Back transformation to the spatial domain gives the separated anisotropic Gaus-
sian filter,

gθ(x, y;σu, σv, θ) =
1

2πσuσv
exp

{

−1
2

x2

a11 − a12
2

a22

}

∗ exp











−1
2

(

y + a12

a22
x
)2

a22











.

(16)
The first factor represents a one-dimensional Gaussian in the x-direction at scale
σx,

gx(x;σx) =
1√
2πσx

exp

{

−1
2

x2

σ2
x

}

(17)

where

σx =

√

a11 −
a12

2

a22

. (18)

The second factor represents a one-dimensional Gaussian along the line t : y =
x tanϕ,

gϕ(r;σϕ) =
1

√

2πσϕ
exp

{

−1
2

r2

σ2
ϕ

}

(19)

where r =
√

x2 + y2 is the distance from the origin, and with direction tangent
tanϕ given by the total derivative of y + a12

a22
x,

tanϕ =
a22

a12



and standard deviation

σϕ =
√
a22 . (20)

Note that
√
2πσx

√

2πσϕ = 2πσuσv, yielding the correct normalization (Eq. (16)).
Rewriting Eq. (16) and substituting the quadratic coefficients Eq. (11) results in

gθ(x, y;σu, σv, θ) = gx(x;σx) ∗ gϕ(
√

x2 + y2;σϕ) (21)

where

tanϕ =
σ2
v cos

2 θ + σ2
u sin

2 θ

(σ2
u − σ2

v) cos θ sin θ
,

σx =
σuσv

√

σ2
v cos

2 θ + σ2
u sin

2 θ
,

σϕ =

√

σ2
v cos

2 θ + σ2
u sin

2 θ . (22)

So we have achieved our goal namely that a Gauss filter at arbitrary orienta-
tion is decomposed into a one dimensional Gauss filter with standard deviation
σx and another one dimensional Gauss filter at orientation ϕ and standard devi-
ation σϕ. For the anisotropic case σu = σv = σ, it is verified easily that σx = σ,
σϕ = σ, and tanϕ = 0. Further, for θ = 0, trivially σx = σu, σϕ = σv, and
tanϕ = 0, and for θ = π

2
, σx = σv, σϕ = σu, and tanϕ = 0.

An arbitrary example orientation of θ = π
4
and σv = σ, σu = 2σ, results in

σx =
2
5

√
10σ, σϕ =

1
2

√
10σ, and tanϕ = 5

3
(ϕ ≈ π

3
), see Fig. 1c.

3 Implementation

Implementation of Eq. (21) boils down to first applying a one dimensional Gaus-
sian convolution in the x-direction. The resulting image is then convolved with a
one-dimensional Gaussian in the ϕ-direction yielding the anisotropic smoothed
image. The latter step implies interpolation, which can be achieved by linear in-
terpolation between two neighboring x-pixels on the crossing between the image
x-line of interest and the t-axis (see Fig. 1c). In this section, we consider two
implementations of the anisotropic Gaussian, based on a common convolution
operation, and based on a recursive filter [23], respectively.

Convolution Filter

Due to the filter symmetry, the x-filter Eq. (17) can be applied by adding pixel i
left from the filter center with pixel i right from the filter center, and multiplying
the summed pixels with filter weight i, or

gx[x, y] = w0f [x, y] +

bN/2c
∑

i=1

wi (f [x− i, y] + f [x+ i, y]) . (23)



Here, f [x, y] is the input image, wi is the filter kernel for half the sampled
Gaussian from 0 to bN/2c, and gx[x, y] is the filtered result image.
Filtering along the line t : y = µx, where µ = tanϕ, is achieved by a sheared

filter,

gθ[x, y] = w0gx[x, y] +

bM/2c
∑

i=1

wi (gx[x− µi, y − i] + gx[x+ µi, y + i]) . (24)

Notice that the y ± i coordinate falls exactly on a line, whereas the x ± µi
coordinate may fall between two pixels. Hence, the value of the source pixel may
be obtained by interpolating between the pixels at the line of interest. To achieve
our goal of fast anisotropic filtering, we consider linear interpolation between the
neighboring pixels at x± µi with interpolation coefficient a. The filter equation
then becomes

gθ[x, y] = w0gx[x, y] +

bM/2c
∑

i=1

wi {a (gx[bx− µic, y − i] + gx[bx+ µic, y + i])

+(1− a) (gx[bx− µic − 1, y − i] + gx[bx+ µic+ 1, y + i])} . (25)

The multiplication of wia and wi(1− a) can be taken out of the loop to reduce
the computational complexity of the filter.

Recursive Filter

Rather than applying convolution operators, Eq. (21) may be implemented by
recursive filters. Van Vliet et al. [23, 24] define a scheme for one-dimensional
Gaussian filtering with infinite support. The recursive filter requires only 7 mul-
tiplications per pixel, an improvement over [5]. The complexity is independent
of the Gaussian standard deviation σ. In [24] it is shown that the recursive filter
is faster than its normal counterpart for σ > 1. When using the recursive filter,
filtering along the x-line is given by the forward and backward filter pair,

gfx [x, y] = a0f [x, y]− a1g
f
x [x− 1, y]− a2g

f
x [x− 2, y]− a3g

f
x [x− 3, y]

gbx[x, y] = a0g
f
x [x, y]− a1g

b
x[x+ 1, y]− a2g

b
x[x+ 2, y]− a3g

b
x[x+ 3, y] . (26)

Here, ai represent the filter coefficients as given by [23, 24], and gbx[x, y] is the
x-filtered result image. The computational complexity of the recursive filter is 7
multiplications per pixel.
Filtering along the line t : y = µx, µ = tanϕ, is achieved by a sheared

recursive filter,

gfθ [x, y] = gfθ [t] = a0g
b
x[x+ µy, y]− a1g

f
θ [t− 1]− a2g

f
θ [t− 2]− a3g

f
θ [t− 3]

gθ[x, y] = gbθ[t] = a0g
f
θ [x+ µy, y]− a1g

b
θ[t− 1]− a2g

b
θ[t− 2]− a3g

b
θ[t− 3] .

(27)



Note that (x, y) are constraint to lie on the line t, hence may point to positions
“between” pixels. Since interpolation of the recursive filter values is not possible,
the filter history gfθ [t] and g

b
θ[t] has to be buffered, such that all t values are at

the buffer “grid”. The input values, f [x, y] for the forward filter and gfθ [x, y] for

the backward filter, are interpolated from the input data. The results gfθ [x, y]
and gθ[x, y] are interpolated to the output pixel grid by combining with the
previous result. Since all pixels are at the exact line position, interpolation can
be performed linearly between the current value and the previous value.
Computational complexity of the proposed implementations and a few com-

mon methods for Gaussian convolution is shown in Tab. 3. From the table it is
expected that in the case of arbitrary θ, the xt-separated filter performs faster
than the uv-separated filter with identical outcome.

Table 1. Complexity per pixel of various algorithms for Gaussian smoothing. Filter
size is denoted by N ×M , depending on the Gaussian standard deviation σ.

Filter Separability Complexity

type Multiplications Additions

convolution xy1 bN/2c+ bM/2c+ 2 N +M − 2
uv2 2(N +M − 1) 2(N +M − 2)
xt2 bN/2c+M + 1 N + 2M − 3

recursive xy1 14 6
uv2 44 36
xt2 21 16

2D convolution n.a. NM NM − 1
FFT convolution3 n.a. logWH logWH

1Restricted to Gaussian filters oriented along the x- and y-axis only, thus θ = 0◦ or
θ = 90◦.
2Unrestricted θ.
3The complexity of a FFT based convolution depends on the image size W ×H. Note
that the FFT based convolution was not fully optimized.

4 Results

Performance of the filter with respect to computation speed is shown in Tab. 4.
The analysis was carried out on a normal PC (Intel Pentium III at 550 MHz) on
a 512×512 image. The maximum calculation time for the proposed xt-separable
recursive implementation was 65msec. Small variations in the computation time
for the xt-separable recursive implementation is due to the varying direction of
the t-axis as function of σu, σv. The variation causes the processing of different
pixels with respect to the filter origin, hence are influenced by the processor



cache performance. The use of recursive filters is already beneficial for σu > 1
or σv > 1. The xt-separable recursive implementation is 1.5 times slower than
isotropic recursive filtering (44msec, xy-separable implementation), but takes
only 0.5 times the computational load of an uv-separable anisotropic filter. The
computation time for the xt-separable filter is only 1.5 times slower than xy-
aligned recursive filtering (44msec), in which case orientation selection is only
horizontal or vertical. The results correspond to the predictions in Tab. 3. For
the xt-separable convolution filter, calculation is approximately 1.6 times slower
than xy-aligned filtering (data not shown), and 1.3 up to 2 times faster than
uv-separable filtering. Normal convolution filtering is advantageous when con-
sidering locally steered filtering, as in tracking applications, for example Fig. 2.
The recursive filtering is, given its computation speed, more attractive when
smoothing or differentiating the whole image array, as in feature detection, see
Fig. 3. Note that in this case 108 filters were applied to the image, each filter
having different parameter values. The result shown represents the per pixel
maximum response over all 108 filters. Calculation time was within 10 seconds.

Table 2. Performance of various anisotropic Gaussian filter implementations. All tim-
ings in [msec], averaged over 100 trials. Image size 512 × 512 pixels. Filter direction
θ = 45◦.

σu σv 2D FFT 1D convolution1 1D recursive2

convolution1 convolution uv3 xt uv3 xt

1.0 1.0 515 1402 100 67 128 63
1.5 1.0 516 1402 114 81 128 63
2.0 1.0 828 1402 129 100 128 63
3.0 1.0 1610 1402 166 109 128 64
5.0 1.0 4282 1402 238 140 128 65
7.0 2.0 8047 1402 341 181 128 65
7.0 4.0 10203 1402 410 205 128 63
10.0 3.0 16594 1402 483 231 128 65
10.0 5.0 18000 1402 553 256 128 64
10.0 7.0 21125 1402 622 294 128 63

1Filter sizes truncated at 3σ.
2Approximation to Gauss, see Tab. 4.
3Implemented by scanning along the u and the v line, respectively, and by applying
bilinear interpolation between pixels.

The approximation of the two-dimensional Gaussian kernel of Eq. (4) by sep-
arable filters is not perfect due to interpolation of source values along the line
t = y + tanϕ x. We evaluated the error for the xt-separable convolution fil-
ter in comparison to the full two-dimensional spatial convolution. The results
are given in Tab. 4. Interpolation can be considered as a smoothing step with
a small rectangular kernel. Hence, the effective filter is slightly larger than the
theoretical size of the anisotropic Gaussian filter. As a result, the error is large



Fig. 2. Example of line detection by local anisotropic Gaussian filtering. Lines are
tracked by steering the filter in the line direction. Hence, line evidence will be integrated
by the large Gaussian standard deviation along the line, while maintaining spatial
acuity perpendicular to the line. Original from an engineering drawing, courtesy of
PNEM, The Netherlands.

Fig. 3. Example of the detection of C. Elegans worms by applying recursive anisotropic
Gauss filters. The original image is filtered at different orientations and scales, and
the maximum response per pixel over all filters is accumulated. At each pixel, the
local orientation and best fitting ellipse is available to be further processed for worm
segmentation. Computation time was within 10 seconds for 5◦ angular resolution and
3 different aspect ratios (image size 512 × 512 pixels). Original courtesy of Janssen
Pharmaceuticals, Beerse, Belgium.



for small σu, σv, as can be concluded from the table. For the convolution filters
and σu, σv ≥ 3, the interpolation error is of the same magnitude as the trun-
cation error for a 3σ sized filter (last 4 rows in the table). The interpolation
error is smaller for the xt-filter than for the uv-filter. For the latter, bilinear
interpolation have to be performed, corresponding to a larger interpolation filter
than the linear interpolation for the xt-separable filter. For the recursive filter,
the interpolation error of the forward filter accumulates in the backward filter,
causing a larger error. Especially the small filters are less accurate, as pointed
out in [23, 24]. Note that the error due to interpolation is neglectable compared
to the error made by the recursive approximation of the Gaussian filter. For
the uv-separated recursive filter, the bilinear interpolation caused the error ac-
cumulation to have such a drastic effect that the result was far from Gaussian
(data not shown). In conclusion, accuracy for the xt-separated convolution filter
is better than bilinear interpolation combined with uv-separated filtering. For
recursive filtering, error is larger due to the recursive approximation of the Gauss
filter. For numerous applications the computation speed is of more importance
than the precision of the result.

Table 3. Accuracy of various anisotropic Gaussian filter implementations. The max-
imum error over all filter orientations is shown. Error measured as root of the sum
squared differences with the true Gaussian kernel.

σu σv convolution uv convolution xt recursive xt

1.0 1.0 0 0 0.0196
1.5 1.0 0.0195 0.0132 0.0608
2.0 1.0 0.0160 0.0131 0.0536
3.0 1.0 0.0126 0.0114 0.0324
5.0 2.0 0.0018 0.0017 0.0062
7.0 2.0 0.0015 0.0014 0.0050
7.0 4.0 0.0003 0.0003 0.0012
10.0 3.0 0.0005 0.0004 0.0017
10.0 5.0 0.0001 0.0001 0.0008
10.0 7.0 0.0001 0.0001 0.0007

5 Derivative Filters

For the uv-separable filtering approach, as for the full two-dimensional convolu-
tion, Gaussian derivative filtering can be achieved by taking the derivatives of the
kernel function. For the proposed xt-separable approach, kernel differentiation is
not applicable due to the misalignment of the filter directions (x, t) with respect
to the direction of derivation (u, v) (see Fig. 1c). Like in [23], sample differences
may be used as approximations to the true image derivatives. Hence, filtering



with a rotated version of the derivative kernel results in the image derivatives in
the u, v direction, where the rotation kernel is given by Eq. (3).
The first order derivatives transform after rotation by

(

du
dv

)

=

[

cos θ sin θ
− sin θ cos θ

](

dx
dy

)

. (28)

Hence, rotation of the sample differences [1, 0,−1] yield

gθu =
1

2
cos θ (gθ[x+ 1, y]− gθ[x− 1, y]) +

1

2
sin θ (gθ[x, y + 1]− gθ[x, y − 1])

(29)

gθv = −
1

2
sin θ (gθ[x+ 1, y]− gθ[x− 1, y]) +

1

2
cos θ (gθ[x, y + 1]− gθ[x, y − 1]) .

(30)

The second order derivatives transform by

[

du2 dudv
dudv dv2

]

=

[

cos θ sin θ
− sin θ cos θ

] [

dx2 dxdy
dxdy dy2

] [

cos θ sin θ
− sin θ cos θ

]T

. (31)

Transforming the second order sample differences yields

gθuu = cos
2 θ (gθ[x+ 1, y]− 2gθ[x, y] + gθ[x− 1, y]) + 2 sin θ cos θ

(gθ[x+ 1, y + 1] + gθ[x− 1, y − 1]− gθ[x− 1, y + 1]− gθ[x+ 1, y − 1])
+ sin2 θ (gθ[x, y + 1]− 2gθ[x, y] + gθ[x, y − 1]) (32)

gθuv = sin θ cos θ {(gθ[x, y + 1]− 2gθ[x, y] + gθ[x, y − 1])−
(gθ[x+ 1, y]− 2gθ[x, y] + gθ[x− 1, y])}+

(

cos2 θ − sin2 θ
)

(gθ[x+ 1, y + 1] + gθ[x− 1, y − 1]− gθ[x− 1, y + 1]− gθ[x+ 1, y − 1])
(33)

gθvv = sin
2 θ (gθ[x+ 1, y]− 2gθ[x, y] + gθ[x− 1, y])− 2 sin θ cos θ

(gθ[x+ 1, y + 1] + gθ[x− 1, y − 1]− gθ[x− 1, y + 1]− gθ[x+ 1, y − 1])
+ cos2 θ (gθ[x, y + 1]− 2gθ[x, y] + gθ[x, y − 1]) . (34)

These filters can be included into the xt-separable filtering (Eq. (23), Eq. (25),
Eq. (26), Eq. (27)).

6 Conclusion

We derived the decomposition of the anisotropic Gaussian in a one dimensional
Gauss filter in the x-direction followed by a one dimensional filter in a non-
orthogonal direction ϕ. The decomposition is shown to be extremely efficient
from a computing perspective. An implementation scheme for normal convolu-
tion and for recursive filtering is proposed. Also directed derivative filters are
demonstrated.



We proposed a scheme for both anisotropic convolution filtering and anisotropic
recursive filtering. Convolution filtering is advantageous when considering locally
steered filtering, as is the case in tracking applications [11, 18, 19]. Recursive fil-
tering is more attractive when smoothing or differentiating the whole image
array, for example in feature detection [3, 15, 20, 21]. Error due to interpolation
is neglectable compared to the error made by the recursive approximation of the
Gaussian filter, and compared to the truncation error for convolution filters. The
use of fast recursive filters [23, 24] result in an calculation time of 65msec. for a
512× 512 input image on a normal PC.
Differentiation opposite to or along the filter direction is achieved by con-

volution with a rotated sample difference filters. For practical applicability of
orientation scale-space analysis, we believe the exact approximation of Gaussian
derivatives is of less importance than the ability to compute results in limited
time.
Although the decomposition of Eq. (4) is possible in higher dimensions, the

method is less beneficial for three dimensional filtering applications. Only one
of the axes can be chosen to be aligned with the organization of the pixels in
memory. For the other directions, traversing in arbitrary directions through the
pixel data is required. Hence, computational gain is only marginal for higher
dimensional smoothing.
The proposed anisotropic Gaussian filtering method allows fast calculation

of edge and ridge maps, with high spatial and angular accuracy. The anisotropic
filters can be applied in cases where edge and ridge data is distorted. Invariant
feature extraction from a 2 dimensional affine projection of a 3D scene can be
achieved by tuning the anisotropic Gaussian filter, an important achievement for
computer vision. When structures are inherently interrupted, as is the case for
dashed line detection, anisotropic Gaussian filter may accumulate evidence along
the line while maintaining spatial acuity perpendicular to the line [9]. Orientation
scale-space analysis can best be based on anisotropic Gaussian filters [22]. The
proposed filtering method enables the practical applicability of orientation scale-
space analysis.

References

1. A. Almansa and T. Lindeberg. Fingerprint enhancement by shape adaptation
of scale-space operators with automatic scale selection. IEEE Image Processing,
9:2027–2042, 2000.

2. J. Bigün, G. H. Granlund, and J. Wiklund. Multidimensional orientation estima-
tion with applications to texture analysis and optic flow. IEEE Trans. Pattern

Anal. Machine Intell., 13:775–790, 1991.
3. F. J. Canny. A computational approach to edge detection. IEEE Trans. Pattern

Anal. Machine Intell., 8(6):679–698, 1986.
4. R. Deriche. Separable recursive filtering for efficient multi-scale edge detection.

In Proceedings of the International Workshop on Machine Vision and Machine

Intelligence, pages 18–23, 1987.
5. R. Deriche. Fast algorithms for low-level vision. IEEE Trans. Pattern Anal. Ma-

chine Intell., 12:78–87, 1990.



6. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever.
Scale and the differential structure of images. Image and Vision Comput.,
10(6):376–388, 1992.

7. W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE
Trans. Pattern Anal. Machine Intell., 13:891–906, 1991.

8. J. G̊arding and T. Lindeberg. Direct computation of shape cues using scale-adapted
spatial derivative operators. Int. J. Comput. Vision, 17(2):163–191, 1996.

9. J. M. Geusebroek, A. W. M. Smeulders, and H. Geerts. A minimum cost approach
for segmenting networks of lines. Int. J. Comput. Vision, 43(2):99–111, 2001.

10. L. D. Griffin. Critical point events in affine scale space. In Scale-Space Theories

in Computer Vision, pages 165–180. Springer-Verlag, 1997.
11. A. Jonk, R. van den Boomgaard, and A. W. M. Smeulders. A line tracker. submitted

to Comput. Vision Image Understanding.
12. S. Kalitzin, B. ter Haar Romeny, and M. Viergever. Invertible orientation bundles

on 2d scalar images. In Scale-Space Theories in Computer Vision, pages 77–88.
Springer-Verlag, 1997.

13. J. J. Koenderink. The structure of images. Biol. Cybern., 50:363–370, 1984.
14. J. J. Koenderink and A. J. van Doorn. Receptive field families. Biol. Cybern.,

63:291–297, 1990.
15. T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Pub-

lishers, Boston, 1994.
16. T. Lindeberg. Edge detection and ridge detection with automatic scale selection.

In Proceedings of the IEEE International Conference on Computer Vision and

Pattern Recognition, pages 465–470. IEEE Computer Society, 1996.
17. P. Perona. Steerable-scalable kernels for edge detection and junction analysis.

Image Vision Comput., 10:663–672, 1992.
18. E.P. Simoncelli. Distributed Representation and Analysis of Visual Motion. PhD

thesis, Department of Electrical Engineering and Computer Science, MIT, Cam-
bridge, MA, 1993.

19. E.P. Simoncelli, E.H. Adelson, and D.J. Heeger. Probability distributions of optical
flow. In Proceedings of the IEEE International Conference on Computer Vision

and Pattern Recognition, pages 310–315. IEEE Computer Society, 1991.
20. C. Steger. An unbiased detector of curvilinear structures. IEEE Trans. Pattern

Anal. Machine Intell., 20:113–125, 1998.
21. B. M. ter Haar Romeny, editor. Geometry-Driven Diffusion in Computer Vision.

Kluwer Academic Publishers, Boston, 1994.
22. M. van Ginkel, P. W. Verbeek, and L. J. van Vliet. Improved orientation selectivity

for orientation estimation. In M. Frydrych, J. Parkkinen, and A. Visa, editors,
Proceedings of the 10th Scandinavian Conference on Image Analysis, pages 533–
537, 1997.

23. L. J. van Vliet, I. T. Young, and P. W. Verbeek. Recursive Gaussian derivative
filters. In Proceedings ICPR ’98, pages 509–514. IEEE Computer Society Press,
1998.

24. I. T. Young and L. J. van Vliet. Recursive implementation of the Gaussian filter.
Signal Processing, 44:139–151, 1995.


