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Abstract

We present a technique for the computation of 2D component velocity from image sequences. Initially, the image
sequence is represented by a family of spatiotemporal velocity-tuned linear filters. Component velocity, computed
from spatiotemporal responses of identically tuned filters, is expressed in terms of the local first-order behavior
of surfaces of constant phase. Justification for this definition is discussed from the perspectives of both 2D image
translation and deviations from translation that are typical in perspective projections of 3D scenes. The resulting
technique is predominantly linear, efficient, and suitable for paralle]l processing. Moreover, it is local in space-time,
robust with respect to noise, and permits multiple estimates within a single neighborhood. Promising quantitative
results are reported from experiments with realistic image sequences, including cases with sizeable perspective

deformation.

1 Introduction

This article addresses the quantitative measurement of
velocity in image sequences. The important issues are
(1) the accuracy with which velocity can be computed;
(2) robustness with respect to smooth contrast variations
and affine deformation (i.e., deviations from 2D image
translation that are typical in perspective projections
of 3D scenes); (3) localization in space-time; (4) noise
robustness; and (5) the ability to discern different veloci-
ties within a single neighborhood. Our approach is based
on the phase information in a local-frequency representa-
tion of the image sequence that is produced by a family
of velocity-tuned linear filters. The velocity measure-
ments are limited to component velocity: the projected
components of 2D velocity onto directions normal to
oriented structure in the image (a definition is given
in section 3). The combination of these measurements
to derive the full 2D velocity is briefly discussed.
Our reasons for concentrating on component velocity
(also referred to as normal velocity) stem from a desire
for local measurements, and the well-known aperture
problem (Marr and Ullman 1981). Local measurements
allow smoothly varying velocity fields to be estimated
based on translational image velocity as opposed to
more complicated descriptions of the velocity field over

larger image patches. However, in narrow spatiotem-
poral apertures the intensity structure is often roughly
one-dimensional so that only one component of the
image velocity can be accurately determined. To obtain
Jull 2D velocity fields, larger space-time support is
therefore required. In our view, the common assump-
tions of smoothness, uniqueness, and the coherence of
neighboring measurements that are involved in combin-
ing local measurements to determine 2D velocity, to
fill in regions without measurements, and to reduce the
effects of noise, should be viewed as aspects of interpre-
tation, and as such, are distinct issues. In considering
just normal components of velocity we hope to obtain
more accurate estimates of motion within smaller aper-
tures, which leads to better spatial resolution of velocity
fields. As a result, the effects of image rotation and
perspective distortions such as shear and dilation, as
well as measurements near occlusion boundaries, may
be handled more reliably.

Before we discuss the use of phase information, it
is instructive to contrast local frequency-based ap-
proaches with other common approaches. The differ-
ence lies mainly in the use of a different representation
of the raw image sequence, which in frequency-based
approaches is provided by a collection of velocity-tuned,
scale-specific linear filters. Most other techniques,
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including gradient-based techniques (e.g., Enkelmann
1986; Glazer 1987; Horn and Schunck 1981; Nagel
1983), correlation-based techniques (e.g., Anandan
1989; Burt et al. 1983; van Santan and Sperling 1985),
and contour-based approaches (e.g., Buxton and Buxton
1984; Marr and Ullman 1981; Waxman et al. 1988),
take as input an image sequence, often with some form
of spatial preprocessing. The preprocessing typically
takes the form of spatial Gaussian smoothing, or scale-
specific, bandpass filtering. The main objectives of such
filtering have been to lessen the effects of noise, and
to isolate image structure of interest (e.g., zero-crossing
contours, or different scales for coarse-fine analysis).
Recently it was shown that the initial filters themselves
could be tuned to ranges of component image velocity
(Adelson and Bergen 1985, 1986; Fleet and Jepson
1984, 1989; Watson and Ahumada 1985). As a result,
noise robustness is enhanced because the filters can be
designed to attenuate noise through time as well as
space. Furthermore, the different filters simplify some
occlusion relationships (such as those produced by
waving your fingers in front of your eyes) by separating
image structure on the basis of its motion. In a given
spatiotemporal window there may be several signal
structures with different component velocities, possibly
resulting from texture, partial occlusion, and transpar-
ency. The separation of image structure provided by the
filters permits independent measurements of velocity at
different orientations and scales within a single neigh-
borhood. Finally, although a large number of filters may
be involved, prefiltering can lead to bit compression.

One particular limitation on this initial representation
concerns velocity resolution, that is, the number of dis-
cernible velocities within a local neighborhood. The
uncertainty relation places an upper bound on the
simultaneous attainment of spatiotemporal resolution
and velocity resolution for a given spatiotemporal fre-
quency range (see (Daugman 1985) for the related case
in 2D). As a consequence, if the spatiotemporal support
is kept small, we can expect only a limited separation
of velocities. Fortunately, in most vision applications
a crude degree of separation is sufficient in that the
occurrence of more than two or three velocities in a
small neighborhood is unlikely. This also means, how-
ever, that a subsequent stage of processing is required
because the accuracy required for tasks such as the
determination of ego-motion and surface parameters is
greater than the tuning width of single filters (Barron

1988). Previous frequency-based approaches toward this
end have been amplitude-based, and have sacrificed
velocity resolution as a consequence of using the rela-
tive amplitudes of differently tuned filters (Adelson and
Bergen 1986; Heeger 1987, 1988). Because of this, two
different component velocities could be confused with
a single component velocity; the sum of two different
component velocities in a single neighborhood, as can
occur with textured, semi-transparent, or partially
occluding objects, can have the same distribution of out-
put amplitudes as a single component velocity. This can
occur even if the two component velocities lie in the
tuning regions of different filters. Heeger solves for a
unique 2D velocity from the amplitudes of all velocity
channels in a given spatial patch (Heeger 1988; Horn
and Schunck 1981). While this method appears to yield
reasonable accuracy, it does not reliably resolve dif-
ferent velocities on the same spatial patch.

The three main advantages of phase-based methods
are:

1. Velocity Resolution—Measurements can be com-
puted from the neighboring responses of filters
having identical velocity tuning, thereby preserving
velocity resolution.

2. Subpixel Accuracy—The measurement accuracy sig-
nificantly exceeds the tuning width of single filters,
and is obtained without explicit subpixel reconstruc-
tion or feature localization. In our experimental work
the accuracy is roughly an order of magnitude higher
than that of the filter tuning.

3. Robustness—Phase information is robust with
respect to smooth contrast changes and (near-
identity) affine deformations. In particular, phase is
more robust than amplitude with changes in contrast,
scale, orientation, and speed. Such variations are
often caused by the perspective projection of moving
textured surfaces in 3D, and are deviations from the
model of 2D image translation upon which most
techniques are based.

Section 2 outlines the initial image representation.
Section 3 gives the definition of component velocity
in terms of local phase behavior and outlines a method
for its measurement. This has been implemented, and
several demonstrations of the accuracy and robustness
of the technique are given in sections 4, 5, and 6. These
experiments involve real and synthetic image sequences
with sizeable time-varying perspective distortions.



2 Image Representation

The initial image representation is provided by a set of
linear shift-invariant filters, each of which is tuned to a
narrow range of orientation, speed, and scale, and has
only local spatiotemporal support. Collectively, they
span frequency space providing a complete and efficient
representation. The basic constraints for velocity-tuned
filters are discussed in the literature (Adelson and
Bergen 1985, 1986; Fleet and Jepson 1984, 1989;
Heeger 1987, 1988; Watson and Ahumada 1985).

2.1 Velocity-Tuned Filters

The utility of linear filters follows from the simple prop-
erties of 2D image translation when viewed in the fre-
quency domain. To see this, consider a 1D intensity
profile Iy(x) with orientation 6, translating with velocity
v, = vi, where n = (sin 6, —cos 6); that is,

Ix, ) =L n— ) )

Here, x = (x;, x,) and ¢ denote space-time variables,
while k = (k,, k,) and w denote their respective fre-
quency domain variables. Also, X * i denotes the usual
dot product. It can be shown that the Fourier transform
of (), Ik, w) = F(x, 1], is

Ik, ) = Ik -ndk -nt)sk-v, +w) (2

where 8(x) is a Dirac delta function, and n* = (cos 8,
sin ) is perpendicular to n. From (2) note that all non-
zero frequency components associated with the moving
profile must lie on a line through the origin in the fre-
quency domain. The speed v determines the angle
between this line and the spatial frequency plane w = 0.
The direction of motion n determines the orientation
of the line about the w-axis. Thus, a velocity-tuned
linear filter should have its amplitude spectrum concen-
trated about the appropriate line in frequency space.
In addition, it is important that the filter support be
local in space-time; otherwise, several image properties
may be merged accidentally into a single measurement.

2.2 Gabor Filters

Unfortunately, the simultaneous localization of a window
in space-time and the frequency domain is restricted
by the uncertainty relation (Bracewell 1978). If the
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radius of the window is defined as one standard devia-
tion, then a Gaussian envelope minimizes this joint
localization (Gabor 1946; Slepian 1983). This leads to
the class of 3D Gabor kernels:

Gabor(x, #; ko, wo, C) = €@ *e2Gx, 1; ) (3)
where ¢*¥ is a complex exponential, and G(x, t; C)
denotes a 3D Gaussian envelope with covariance matrix
C. The Fourier transform of (3) is simply a Gaussian

centered at (Ko, wg), that is,

F[Gabor(K, w; ko, wo, O)] = G(k — ko, @ — wp; C)
)

where G(k, w; O) is also a Gaussian but with covariance
matrix C™'. The Gaussian in (3) determines the pro-
file of the amplitude spectrum, and the complex modu-
lation determines its placement in the frequency domain.
Here we concentrate on the use of spheroidal envelopes
for which C = ¢l, so that the Gaussian envelope is sep-
arable in space-time with standard deviation ¢. Using
this separability, along with the phase symmetries that
exist among those kernels that comprise an entire family
of filters, very efficient implementations are feasible.
The phase-based technique described below requires
bandpass, constant-phase filters, but is not restricted
to separable amplitude spectra.

To be an efficient representation, the directional and
scale tunings of the various filters should not overlap
significantly. As well, the output of each filter should
be sampled at a rate that avoids unnecessary correlation
in the resulting representation. In principle, the dimen-
sion of the representation should not be larger than the
original image, and in fact, substantial bit compression
may be possible, such as an order of magnitude or more
(Burt and Adelson 1983).

2.3 Directional Tuning

Let the extent of the amplitude spectra be measured
at one standard deviation. The required number of
directionally tuned filters can be viewed as a function
of bandwidth. In 2D, for frequency bandwidth 8 (in
octaves) and a central frequency f, about which the
filters should be tuned, the standard deviation of the
Gaussian envelope in frequency space is easily shown
to be

B _
o B2 = 1)

2+ ©)
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Fig. 1 Directionally tuned filters with neighboring amplitude spectra
should not overlap significantly. The orientation tuning A, measured
at one standard deviation o, is determined by the bandwidth 8.
Here, A8 = tan (r/f;). For small angles, with r = gy, it follows that
Af = a/f;.

Then, as shown in figure 1, for reasonably narrow
directional tuning, the range of orientations for which
a single filter is responsible may be expressed as 2A8 =
20;/fo. The appropriate number of differently tuned
filter types can then be written as

] _[»@F+ 1)"‘
N, @) [Mo] [2 Q-1 ©
For example, with a bandwidth of 0.8 octaves this
yields 6 filter types, each tuned to a range of 2A8 = 30
degrees. The ceiling will yield a small amount of over-
lap when the bandwidth is such that the filters do not
tile the bandpass region cleanly.

In essence this analysis amounts to dividing the band-
pass region by the area required by the amplitude spec-
tra of the directionally tuned filters, the sizes of which
are inversely proportional to the extent of their respec-
tive kernels in space. This generalizes in a straightfor-
ward way to space-time where a scale-specific band-
pass region is the volume between two spheres. For
a fixed volume of spatiotemporal support, the number
of differently tuned velocity filters increases quadrati-
cally as a function of the peak tuning frequency (the

octave number). This yields a scale-invariant distribu-
tion of filters.

2.4 Subsampling and Interpolation

We now consider the discrete sampling (representation)
of the output of a single filter type. Let R(x, ) be the
result of convolving the image I(x, #) with a complex-
valued Gabor kernel (3). For general images, R(x, 1)
will be bandpass with its amplitude spectrum concen-
trated near (Ko, wp). The minimal sampling rate for
R(x, 1) is defined according to the extent of filter’s
amplitude spectrum. Given a tiling of frequency space
as discussed in the previous section, it is sufficient to
represent frequencies in the cube centered on (Ko, wy),
having sides of length 2¢,. The appropriate sampling
rate is the Nyquist rate for frequency o (as can be
seen by demodulating the response R(X, 7) by
e @00 and considering the sampling rate for the
cube now centered at the origin (Bracewell 1978)).
Therefore, the minimal sampling rate corresponds to
a sampling distance of As = /g, = o, where o is
the standard deviation of the Gaussian support in space-
time. If the tiles do not overlap then the total number
of sammples, at the minimal rate, will be equal to the
number of pixels in the space-time region that are col-
lectively encoded; that is, thére are no redundant
degrees of freedom in the representation.

The computation of component velocity described
below implicitly requires an interpolant for R(x, 7).
Toward this end we sacrifice efficient image encoding
in favor of redundancy so that suitable interpolants are
easier to compute. In particular, in the experiments
reported below, we retain one (complex) sample every
o. This allows reasonably accurate interpolants to be
obtained from local samples of a single filter type.
Although the issue of accurate interpolation from a
minimal sampling rate of As = o is important, it is
beyond the scope of this paper (cf. (Jepson 1989)).

3 Component Image Velocity

Because Gabor(x, f) is complex valued, so is its

response R(X, #). Therefore, it can be expressed as
R(x, 1) = p(x, 1)e**? Q)

where p(x, 7} and ¢(x, ) denote its amplitude and phase
components:

p(x, 1) = |R(x, )|
VRe[R®x, 2 + Im[R(x, O] (8)




#(x, 1) = arg[R(x, )]
Im[log, R(x, )] € (—, 7} 9

To find an appropriate definition of component image
velocity, a fundamental problem is to determine which
properties of the response R(x, 7) evolve in time accord-
ing to the projected motion field. We argue that the tem-
poral evolution of (spatial) contours of constant phase
provides a better approximation to the motion field than
do contours of constant amplitude, and hence level con-
tours of R(x, f).

3.1 Phase Robustness

If the temporal variation of image intensity was due
solely to image translation, as in I(x, ) = Iy(x — vi),
then it is easy to show that the filter outputs would also
translate, as in R(x, 1) = Rq(x — v1), for some Ry(x).
Accordingly, various standard methods (e.g., (Anandan
1989; Horn and Schunck 1981; Nagel 1983)) could then
be used to measure the velocity v. Unfortunately, image
translation is a crude approximation to the typical time-
varying behavior of image intensity. A more realistic
model includes contrast variation and affine deforma-
tion (caused by perspective projection); and it is from
this perspective that we propose the use of phase infor-
mation. In particular, we argue that the evolution of
phase contours provides a much better approximation
to the projected motion field than the filter response
R(x, #) in that the amplitude of response p(x, ?) is gener-
ally very sensitive to changes in contrast and local varia-
tions in input scale, speed, and orientation.

Below we demonstrate the robustness of phase as
compared to amplitude with two 1D examples which
serve to approximate the dilation of an image as a
camera approaches a planar surface. In particular, given
a 1D signal I,(x) we consider the time-varying image

Ix, 1) = Lx(1 — af)) (10)

for some o > 0. The pattern Iy(x) is simply stretched
at ¢ increases. The velocity field for this deformation is
given by the motion of fixed points, say £, in the pattern
Iy(x). In image coordinates these points appear on paths
generated by x(1 — af) = £. These paths are clearly
visible from the inputs in Figures 2 and 3 (top left).

Figure 2 (top) shows the time-varying intensity pat-
tern generated by equation (10) for I(x) = sin 27 f, x),
and the time-varying response of the real part of a
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Gabor filter tuned to spatial frequency 27 f, and to zero
velocity. The amplitude and phase components of
R(x, 1) are shown in figure 2 (middle). Figure 2 (bot-
tom) shows the level contours of constant amplitude and
constant phase superimposed upon the input. While the
phase contours provide a good approximation to the
motion field, the amplitude contours do not. In this sim-
ple example, p(x, f) simply reflects the tuning of the
filter. Because the amplitude spectrum is Gaussian-
shaped, p(x, f) depends on the local scale and speed
of the input. Other things being equal, p(x, f) increases
for inputs closer to the principal frequency to which
the filter is tuned. With two spatial dimensions the
amplitude will depend on local orientation as well as
speed and scale, all of which vary locally in typical pro-
jections of 3D scenes.

Figure 3 depicts a similar camera motion except that
Iy(x) is taken to be a sample from white Gaussian noise.
This is a more realistic example in that I(x) now has
structure at all scales, so that different image structure
will be emphasized by the filter at different times. Fig-
ure 3 (top) shows the input, and the real part of the
Gabor response. The time-varying amplitude and phase
components of response are given in figure 3 (middle).
Figure 3 (bottom) shows their level contours superim-
posed upon the input. Again, note that the amplitude
contours are very sensitive to small scale perturbations,
and do not evolve according the motion field. On the
other hand, except near a few spatiotemporal locations,
the phase contours do provide a good approximation
to the motion field.

Similar simulations show that phase behavior is rela-
tively insensitive to photometric deformations that result
from changes in viewing direction, surface normal, and
lighting conditions. In particular, as long as the photo-
metric effects (e.g., shadows, highlights, etc.) do not
introduce power over a wide frequency band relative
to the surface texture, the phase behavior of most filter
outputs will be largely unaffected. For example, in the
case of smooth shading gradients, the main spatiotem-
poral photometric effects are relatively smooth contrast
variations. Although the amplitude response of filters
tuned to high spatial frequencies will be affected, the
phase behavior will remain stable. Conversely, in local
neighborhoods where the image is dominated by a steep
shading gradient (i.e., shadow boundaries with little
surface texture), the spatiotemporal phase structure will
reflect the motion of the shading edge. In general, we
expect that for textured surfaces, the phase behavior
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Fig. 2. (top-left) I(x, ©) = sin Qaxfy(l — af) where f; = 0.08 pixels, o = 00125, and x = ¢ = 0 in the center (time on the vertical axis).
The filter was tuned to speeds about 0, frequencies about f,, and an octave bandwidth of 0.8. (top-right) Real part of Gabor output. (middle)
Amplitude and phase outputs. (bottom) Level contours of constant amplitude and phase superimposed on the input.

will be predominantly influenced by the projected
velocity field.

The basic ideas behind our approach can now be
summarized. First we use the temporal evolution of
constant phase contours to define image velocity. Sec-
ond, a threshold technique is used to detect and remove
velocity measurements in regions for which phase con-
tours are not likely to provide reliable information about
the motion field. The performance of the resulting tech-
nique is evaluated through extensive experimentation.

3.2 Component Velocity from Phase Contours

As motivated above, we consider space-time surfaces
of constant phase, that is, solutions to

#(x, 1) =c, cé€R (11

Assuming that constant phase surfaces evolve according
to the motion field, a point x,(f) moving with the motion
field satisfies ¢(xo(f), ) = c. Differentiating with
respect to ¢, we find that
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Fig. 3. The camera approaches a surface covered by white Gaussian noise. The filter tuning was identical to that in figure 2. (fop-right) Real
part of Gabor output. (middle) Amplitude and phase outputs. (botiom) Level contours of constant amplitude and phase superimposed on the input.

Véx, - (v, 1) =0 (12)

where V¢ = (¢, ¢, ¢,), and v = (dxo/dt, dyo/ds).
The aperture problem is apparent from (12) since the
component of the velocity v in the direction perpendic-
ular to the spatial gradient ¢, = (¢,, ¢,) is not deter-
mined. Therefore we only consider the component of
v in the direction

n(x, 1) = %, 0 (13)
[ox(x, 1)

wherel|’|| is the 2-norm. The combination of (12) with
(13) provides our definition for component image veloc-
ity v,,, at a point (x, f), as the solution of the follow-
ing two equations:

Vo, 0+ (v, 1) = 0 (14)
a€R (15

After outlining the computation of V¢ (x, ) in the fol-
lowing section, we discuss this definition in relation
to previously used definitions, to frequency analysis,
and to phase-difference methods.

v, = an(x, o),
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3.3 Measuring Local Phase Behavior

Rather than compute Ve(x, f) from the subsampled
phase signal directly, we use the identity

Im[R*(x, 1) VR(x, 1)}
PUX, 1)

where R* denotes complex conjugate of R, Imlz]
denotes the imaginary part of z, and Im[z] = (Im[z,],
Im(z,], Im[z5]). In terms of the real and imaginary parts
of R(x, ¢) and VR(x, 1), (16) becomes

Vé(x, f) = {Im[VR(, 9] Re[R(X, ?)]
— Re[VR(x, O] Im[r(x, )]}
+ {Re[R(x, N]? + Im[R(x, H]*} (17)

Vo, ) =

(16)

In the complex plane, equation (17) corresponds to
a projection of each component of the VR(x, #) onto
the unit vector orthogonal to R(x, 7). This formulation
eliminates the need for an explicit trigonometric func-
tion to compute the phase signal from R(x, 7). It also
avoids problems arising from phase unwrapping and
discontinuities.

From the subsampled representation of the filter out-
put, it is necessary to numerically estimate R(x, f) and
VR(x, £). The numerical interpolation and differentiation
of the filter output can be accomplished by convolution
with a discrete kernel, as explained in the Appendix.

3.4 Relation to Previous Approaches

Our definition of component image velocity has much
in common with standard gradient-based approaches
that assume an initial stage of prefiltering in order to
reduce the effects of noise, or to isolate intensity struc-
ture of interest (e.g., (Enkelmann 1986; Glazer 1987)).
One difference is that the initial representation of the
image sequence is provided by velocity-tuned filters.
The other major difference is that, in general, the use
of phase behavior provides a closer approximation to
the projected motion field than does the motion of level
contours of constant filter output which depend signifi-
cantly on amplitude. Moreover, note that although the
arguments in section 3.1 were made in terms of velocity-
tuned filters, they apply equally well to lowpass and
bandpass filters.

It is also of interest to compare the use phase informa-
tion with zero-crossing approaches (e.g., (Buxton and

Buxton 1984 ; Duncan and Chou 1988; Waxman et al.
1988)). To begin, note that spatiotemporal zero-crossing
surfaces are surfaces of constant phase. For example,
zero-crossings of the sine-Gabor (Im{R(x, 1)]) output
are given by (11) when ¢ = nw, n € Z. Although zero-
crossings of Gabor responses are not identical to zero-
crossings of Laplacian of Gaussian output, they share
the same relevant properties (Fleet 1990). Thus, the
tracking of zero-crossing contours is in accordance with
phase-based approaches. However, Daugman (1987) has
argued that zero-crossings are insufficiently rich
because there exist signals with discernible structure
that produce no zero-crossings after bandpass filtering.
Mayhew and Frisby (1981) argue that peaks, in addi-
tion to zero-crossings, are required to explain binocular
stereopsis. Interestingly, crests (peaks) are also surfaces
of constant phase. But both crests and zeros are special
cases to which we are not restricted. With arbitrary
values of phase, better use is made of the entire signal.
Furthermore, subpixel detection and localization of
zero-crossings is unnecessary. As a consequence, the
density of velocity measurements when based on phase
information will be higher than when restricted to zero-
crossings. For those who match zero-crossing contours
over relatively large distances between frames, note that
analogous methods exist for phase information (Jenkin
and Jepson 1988; Sanger 1988).

3.5 Local Frequency Analysis

We now examine the relationship between our use of
the phase gradient and frequency analysis. First, con-
sider a simplified 2D situation in which the input is
a uniform sinusoidal waveform: I(x) = cos (k; * x). It
is easily shown that the output R(x) of a Gabor filter
tuned to K, is a complex waveform with frequency k,
and amplitude f?(ko ~ K;; ). The output phase ¢(x) =
K; * X, like the phase of the input, is a linear function
of x. The spatial phase gradient is equal to the frequency
k,, and therefore specifies the directional information.
Similarly, for a sinusoidal plane-wave in space-time
pe*®D  where ¢(x, f) = (x, 1) * (k, w), the phase-
gradient yields the spatial and temporal frequencies—
ie, Voix, 1) = (k, w).

The present situation is somewhat more involved.
The Gabor output is a nonuniform waveform because
its amplitude and frequency are not typically constant
functions of space and time. However, note from (7)
that R(x, f) may be rewritten as



& pmes

IdLA

R(X, D = o(x, t)ei[‘ﬁM(xJ)+(X’t)'(ko;°’o)] (18)

where M(x, f) = p(x, £)e®¥*) is a lowpass signal.
Thus, R(x, ?) is essentially a slowly varying modulation,
namely M(x, 7), of the base signal ¢/®®o© to which
the filter was tuned. The phase behavior of M(x, £) can
be viewed as a local correction to the linear phase
behavior of the base signal. Following Whitham (1974),
the local instantaneous frequency can be defined as the
phase gradient:

k(x, 1), w(x, 1)) = Vé(x, ) (19)

If the phase of M(x, ) is linear in space-time, such as
oulx) = K, * X + wyt, then R(X, £) is just an amplitude-
modulated sinusoid with constant frequency (k, + Kk,
wy + wg). Otherwise, the phase gradient Vé(x, ) =
Voux, 1) + (Ky, wg) yields a local, amplitude-
modulated constant-frequency approximation to R(x, £).

In terms of spatioternporal frequency, component
velocity may then be expressed in the usual way. At
a particular location x4 and time #,, the local spatial
frequency k(xo, fo) (Which is normal to level curves of
constant phase at X, in the plane ¢ = #;) gives the normal
direction,

k(xo, to)
||k(Xo, Zo) ||

From (19) and (20), note that R(X,, Z,) is equivalent
to n(Xy, £o) in (13). The corresponding local orientation

estimate is then 0(x,, f,) = arg[k' (Xo, %)]. Similarly,
the 2D normal speed is given by

(X, t) = 20

‘“w(xo, tO) (21)
[k(xo, 2o) ||
Again, note that v, in (21) is equivalent to the speed

o in (15). From (20) and (21), the local phase velocity
of R(x, f) is given by

\‘;n(X07 tO) =

—k(x, Dw(x, 1)

Vu(X, 1) = V%, DO(X, 1) =
Ik(x, 2|2

22)

which is a standard expression of velocity in frequency
space (e.g., see (Adelson and Bergen 1985; Fleet and
Jepson 1984; Watson and Ahumada 1985)). It is also
equivalent to v, provided by (14) and (15). Thus, we
have shown that the expression of component velocity
in terms of level surfaces of constant phase is consistent
with that in terms of spatial and temporal frequencies.

Computation of Component Image Velocity 85

3.6 Phase-Difference Techniques

Interestingly, there exist somewhat similar phase-based
techniques for the measurement of binocular disparity
in which disparity between the left and right views is
expressed in terms of phase differences between band-
pass versions of the left and right images (Jenkin and
Jepson 1988; Sanger 1988). Relative to the local wave-
length of the filter output, the phase difference provides
a measure of the shift required to match the phase of
one view with that of the other. Because the bandwidths
of the filters were relatively narrow (near one octave),
the local wavelength was assumed to be equal to the
principal wavelength to which the filters were tuned.
In comparison to our use of V¢, the phase difference
between the left and right filter outputs can be viewed
as an approximation to one component of the phase gra-
dient based on linear interpolation. The other compo-
nent of the phase gradient is given implicitly in the
assumption that the local wavelength of the filter output
is determined by the filter tuning. Thus, we expect
errors in phase-difference techniques to arise because
of the difference between the local wavelength of re-
sponse and peak tuning wavelength of the filter. Errors
will also arise because of the implicit form of interpola-
tion. That is, linear interpolation yields substantial error
in signal reconstruction unless the sampling rate is pro-
hibitively high (Gardenhire 1964).

In our earlier motion experiments, we used linear
interpolation to measure all components of the gradient
thereby removing errors due to discrepancies between
the response wavelength and the filter tuning. It was
found that, although many of the errors due to poor
interpolation are detectable because they give estimates
far from the frequencies to which the filters were tuned,
there is a large decrease in the density of accurate meas-
urements. With respect to any phase-based technique,
errors in velocity measurements can be expected because
of (1) input noise, (2) deviation of the input behavior
from image translation, and (3) quantization and noise
introduced through signal encoding and the form of
(implicit) reconstruction. For the technique presented
in this paper, component velocity was defined in terms
of surfaces of constant phase, and hence the phase gra-
dient. This is a considerble improvement over the pre-
vious phase-difference techniques both theoretically and
in practice since more accurate forms of interpolation
and measurement follow naturally.
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4 Experimental Results

The technique described above has been implemented
and applied to a variety of image sequences. To obtain
controlled yet realistic image sequences a 3D graphics
package was used to generate a simple geometric envi-
ronment in which real images were used to create sur-
face texture. Rendering the scene from a sequence of
camera positions under perspective projection produced
image sequences complete with perspective distortions
such as shear, dilation/contraction, and rotation. Image
speeds ranged between 0 and 4 pixels/frame. To allow
for comparison of results from different motions (image
deformations) we concentrate here on the tree image
shown in figure 4 (which shows three frames from the
image sequence used in Experiment 4). Results from
other images are reported in (Fleet 1990). In addition
to these sequences we report results from sequences
with additive Gaussian noise, transparency, the Yosemite
sequence used by Heeger (1988), and the Hamburg Taxi-
Cab sequence used by Nagel and Enkelmann (Enkel-
mann 1986; Nagel 1983; Nagel and Enkelmann 1986).

At present, we use only those Gabor filters that cover
a single spatiotemporal bandpass region of 0.8 octaves.
The small bandwidth is important because it reduces
sensitivity to mean illumination and low frequencies.
Natural images have significant amounts of power at
low frequencies (Netravali and Limb 1980), which, if
passed by the filters, will cause unwanted aliasing after
subsampling, and therefore distortion of local phase.
The dc amplitude sensitivity for a Gabor with octave
bandwidth 8 is e ¥ where b = 2¢ + /(2% — 1);
for 8 = 0.8 this is roughly 107>, In order to remove
this residual dc sensitivity, a low-pass version of the

input (scaled by ¢ " can be subtracted from the real
(cosine) part of each Gabor output. This produces an
altered cosine-Gabor kernel of the form [cos (x -k +
twy) — e ¥?] G(x, t; ol), but does not significantly
alter the quadrature relationship with the correspon-
ding sine-Gabor kernel. (With this modified kernel we
found that errors were reduced by approximately 5%.)
In total there were 23 complex kernels: 6 tuned to
speeds about O with preferred directions at multiples
of 30 degrees; 10 tuned to speeds of 1/v3 with direc-
tions at every 36 degrees; 6 tuned to speeds of V3 with
directions every 60 degrees; and a flicker channel tun-
ed to nonzero temporal frequencies and zero spatial fre-
quency. The 46 real 3D convolutions can be im-
plemented as 75 1D stages (Fleet 1990). The organiza-
tion is scale invariant so that other frequency bands
would have a similar arrangement of filter tunings.
Although the number of filters may appear large, the
subsampling (one complex sample every | o | in space
and time) and quantization (to 8 bits) ensures that the
representation remains reasonably efficient.

Because the filter bank is scale invariant, the velocity
resolution available at each scale is constant. But, as
the spatiotemporal filter support increases the
spatiotemporal resolution deteriorates. In the experi-
ments reported below we used high spatiotemporal fre-
quencies, thereby emphasizing spatiotemporal resolution
with a small support width. Unless stated otherwise,
the filters were tuned to a spatiotemporal wavelength
of 4 pixels (frames). The support radius at one stan-
dard deviation was 2.4 pixels (2.4 frames) in space
(time, respectively); the total operator width, out to 3,
was 15. By comparison, in the human fovea the cones
are roughly 20 arc seconds apart and have a temporal

Fig. 4. Frames 10, 20, and 30, from experiment 4 with camera motion along the line of sight.



integration time of roughly 20 msec. In these terms,
the spatiotemporal extent of our filters would be roughly
2 arc minutes and 0.2 seconds. Given this small spatial
extent, and the accuracy of the method as demonstrated
below, the trade-off between spatiotemporal and veloc-
ity resolution does not seem to present a significant
limit for practical applications.

4.1 Error Measure

In principle, all component velocities v,n that are gen-
erated by a given 2D velocity v satisfy

v, )@ —v,) =0 23)

where (v, 1) is the direction vector (in space-time)
tangent to particle paths for which the instantaneous
velocity is v. Equation (23) implies that all component
velocities consistent with v, represented as (n, —v,),
must lie in the plane normal to (v, 1). Conversely, each
component velocity estimate v,i constrains the local
2D velocity to the plane normal to (i, —v,). There-
fore, as discussed in section 5, (23) provides the basis
for the estimation of 2D velocity v from estimates of
component velocity. Accordingly, an appropriate mea-
sure of component velocity error, given a 2D velocity
v and an estimate of component velocity v, is the
angle ¥, between the estimate and the constraint plane
normal to (v, 1); i.e.,

1[’ = arcsin [ (V’ 1) : (ﬁ’ _gn)
‘ VI +v]rV1 + 32

The appropriateness of this error measure follows from
the use of (23) as the basis for the computation of 2D
velocity from the component estimates, and is discussed
in section 5.

Velocity estimates obtained from all 22 filters (ex-
cluding the flicker channel) are presented collectively.
Two main constraints are used to discard those velocity
estimates that are deemed unreliable:

} 24)

1. Frequency Constraint—The computed local fre-
quency (K, @) must satisfy

(Ko, wo) — (K, @) || < 1.204 (25)

where (Ko, wp) is the peak tuning frequency, and
o denotes the standard deviation of the filter’s
amplitude spectrum. That is, local frequencies
up to 20% outside the nominal tuning range of the
filters are accepted. This is based on current work
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concerning the pathological behavior of phase
signals, the results of which are forthcoming (Fleet
1990).

2. Amplitude Constrainis—The local signal amplitude
must be as large as the average local amplitude, and
at least 5% of the largest response amplitude (across
all filters at that frame). Local amplitude was com-
puted as a Gaussian weighted average about the pixel
in question, averaged over all filters. The standard
deviation of the Gaussian was identical to that of the
initial Gabor filters. The amplitude constraints detect
situations in which there was no significant power
at frequencies near (ky, wg), for in such cases the
local response may be dominated by noise and quan-
tization error which makes the measurement of the
phase gradient very sensitive.

4.2 Translational Camera Motion

In the first set of experiments we used a class of image
velocity fields similar to those considered in (Koenderink
and van Doorn 1976) in which the camera undergoes
translational motion with respect to a textured, planar
surface.

4.2.1 Camera and Scene Geometry. let the world
coordinate system be camera-centered, with the instan-
taneous line of sight defined as the Z-axis, a focal length
of 1, and a relatively wide field of view subtending 53
degrees (75 degrees diagonally). The scene consists of
a single planar surface P(X, Y), the gradient of which
is expressed as (tan 8, tan ). The camera’s motion is
contained in the XZ-plane, and is expressed as an angle
«, measured relative to the line of sight. The camera
velocity is given by

Vv, = v.(sin @, 0, cos a) (26)

where v, is the camera speed expressed in world coor-
dinates (focal length units) per frame. Finally, the dis-
tance to the surface along the line of sight is d(f) =
dy + v t(sin « tan 8 — cos «), where d, is the dis-
tance at time ¢ = 0.

Points on the surface with coordinates (X, Y, Z) pro-
ject onto the image plane such thatx = (X/Z, Y/Z). Sur-
face depth, as a function of image location, is given by
Z =d@®/(1 + xtan 8 + ytan ). Following Longuet-
Higgins and Pradzny (1980), it can be shown that the
2D image velocity induced at location x at time ¢ is
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v £) = [vc(l +x tar‘;(f) + y tan ¥)

X (xcosa — sina, ycosa) (27)

From the partial derivatives of (27), the magnitudes
of divergence (div v), curl (curl v), and deformation
(def v) can be determined. These quantities are of inter-
est below in determining the extent to which the pro-
jected image velocity deviates from a model of local
translation. Note that for o« # 90 the velocity field is
quadratic. Image speeds can vary significantly through-
out the image, as does the direction of motion near the
focus of expansion. Also note that these quantities
change nonlinearly through time as the distance to the
surface changes.

Two types of translational motion are reported in
detail: (1) with the camera moving perpendicular to the
line of sight, as if one were looking at the ground while
moving, or out the window of a train (¢ = 90); and
(2) with the camera moving along the line of sight
(a = 0). The camera and scene parameters, insofar as
they change with each image sequence, are given below.

4.2.2 Side-View Motion. EXPERIMENT 1 (a = 90;
B =+v = 0;dy, = 15; v. = 0.075): The first sequence
most closely resembles image translation as the surface
is perpendicular to the line of sight and image velocity
is constant. The image velocity was 0.75 pixels/frame.
Figure 5 (left) shows the histogram of the component
velocity errors (24). The inset gives the proportions
of the accepted estimates that had errors (in absolute
value) less than 1, 2, and 3 degrees. Figure 5 (right)
shows mean error and standard deviation bars as func-
tions of the distance between the estimated local fre-
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quencies and the principal filter tunings of the respec-
tive channels from which they were obtained (as in
(25)). Notice the increase in error as the distance from
the filter tuning increases. Although the frequency cut-
off used to select estimates to compute the histogram
in figure 5 (left) was 1.2g;, it is clear from figure 5
(right) that the errors are still well-behaved beyond this
boundary. Up to the cut-off most errors are less than
1 degree.

Figure 6 (left) shows the component velocity error
behavior as a function of the estimated orientation.
Notice the relatively even distribution of errors as a
function of orientation. This is an important property
for any scheme used to infer 2D velocity from the com-
ponent estimates. Figure 6 (right) shows the distribution
of errors across the image. Intensity is proportional to
the average (absolute) error per estimate; entirely black
regions denote regions containing no estimates that sat-
isfied the frequency and amplitude constraints. Over
70% of the pixels had at least one component velocity
estimate (c.f. figure 4).

EXPERIMENT 2 (@ = 90; 8 = 15; v = 0; dy, = 13;
v. = 0.173): The second case involved faster speeds
and a nonzero surface gradient. This produces a speed
gradient in the direction of image velocity, and differs
from Experiment 1 in that div v and def v are nonzero.
As |B| increases so does the speed gradient. Here,
image speeds ranged from 1.73 pixels/frame on the left
side of the image to 2.63 on the right. Despite the faster,
nonuniform image velocities, the results are similar to
those shown in figures 5 and 6. In particular, the pro-
portions of estimates with errors below 1, 2, and 3
degrees were 90.2%, 98.6%, and 99.7%.

Cv;;lp)ryt (} E ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂm

I I f T I T
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Distance from Filter Tuning

Fig. 5. Experiment 1: side-view motion. (left) Histogram of errors. The inset shows the proportions of estimates with errors less than 1, 2, and
3 degrees. (right) Mean error and standard deviation bars as a function of distance between the estimated local frequencies and the filter tunings.
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Fig. 6. (left) Mean component velocity error and standard deviation bars are shown as a function of the estimated orientation. (righr) Average
absolute error per estimate is shown (as intensity) as a function of image location. Black regions denote no estimates.

EXPERIMENT 3 (o = 90; 8 = 0; v = 20; dy, = 13.5;
v, = 0.135): The final side-view sequence had a ver-
tical surface gradient. This produces a speed gradient
that is perpendicular to the direction of image veloc-
ity. As a consequence, curl v and def v were nonzero
while div v = 0. The perceived effect is motion paral-
lax, the magnitude of which depends on |v|; in this
case it was quite visible. The image speeds ranged from
1.2 pixels/frame at the top of the image to 1.8 at the
bottom. The results are again similar to those in figures
5 and 6, with 86.7%, 976 %, and 99.3 % of the estimates
having errors less than 1, 2, and 3 degrees. Other cases
with different images and more substantial curl and
shear also yield similar results (Fleet 1990).

4.2.3 Front-View Motion. In the next experiment the
camera moved along the line of sight. Image velocities
point radially out from the center of the image (the focus
of expansion), with speeds increasing toward the image
boundaries; div v is nonzero and varies as a function
of time. As a result of the dilation there are local varia-
tions in scale, speed, and the direction of image veloc-
ity, especially near the focus of expansion. Relative to
the accuracy with which we hope to measure velocity,
these local changes in the direction of motion, speed,
and scale constitute significant deviations from a model
of image translation. Also note that there did exist sig-
nificant structure at spatiotemporal frequencies higher
than those to which the filters were tuned. Although
relatively high, the frequency range to which the filters
were tuned was not at the Nyquist limit. Furthermore,
as time progressed and the camera moved closer to the

surface, new structure appeared because the initial
frames were (effectively) down-sampled versions of the
original. Subsequent frames were rendered by repro-
jecting the surface (and the texture) at each frame, and
not by simply interpolating the first frame.
EXPERIMENT 4 (a0 = 0; 8 = 20; v = 0; dy = 13;
v, = 0.2): The time to collision was 65 frames and the
induced image speeds ranged from 0 in the center of the
image to 1.4 pixels/frame on the left, and 2 on the right.
With 2D velocity expressed as a direction vector in
space-time, and speed expressed in degrees (i.e., arctan
llw]p, this local speed variation amounts to speed differ-
ences of close to 1.0 degree between neighboring pixels
(about 15 degrees over the entire operator width). In addi-
tion, over the width of temporal support, the distance
to the surface d(f) decreased by about 20%. As a conse-
quence, div v changes significantly. Figure 7 shows the
histogram of component velocity errors (left) as well as
the error behavior as a function of the distance between
local frequency and the peak tuning frequencies of the
filters. As above, the errors are still well behaved. Al-
though the estimates are not accurate to within 1 degree
of the true velocity, the proportions of estimates with
errors less than 2 and 3 degrees are high (similar to
experiments 1-3). This accuracy is good considering the
speed, direction, and scale changes within the spatio-
temporal support width of the filters. The distribution
of errors over the image is again similar to that shown
in figure 6. Similar performance was observed in other
tests with contraction and even stronger divergence.
With a slower approach to the surface, and therefore
less dilation per frame, the results improve (Fleet 1990).
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Fig. 7. Experiment 4: front-view motion. Image velocity is 0 at the center, 1.4 pixels/frame on the left, and 2 on the right. (l¢ff) Histogram
of component velocity errors. (right) Error behavior as a function of distance from filter tuning.
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Fig. 8 Experiment 5: Image rotation. Image speeds ranged from O at the center to 1.31 at the edges of the image (1.85 in the corners). (leff)
Histogram of component velocity errors. (right) Error behavior as a function of distance from filter tuning.

4.3 Image Rotation

The image velocity fields considered in the first four
experiments were dominated by translation and dilation
(despite the nonzero curl in experiment 3). This experi-
ment deals explicitly with image rotation.

EXPERIMENT 5 (counter-clockwise rotation, 1 degree/
frame): The image velocity fields that result from in-
stantaneous camera rotation (with no translational com-
ponent) do not depend on the depth of scene points
(Longuet-Higgins and Prazdny 1980). Therefore, we
test only the simplest case in which the camera rotates
while the planar surface remains normal to the line of
sight. With rotation of 1 degree per frame, and an image
size of 150150, the image speeds ranged from 0 in
the center of the image to 1.31 pixels/frame at the edges
(1.85 in the corners). The fixed-point of rotation is a
flow singularity. The results, shown in figure 8, are
similar to the dilation sequence above.

4.4 Additive Noise

We now consider the robustness of phase information
when significant amounts of noise degrade the input.
Spatiotemporal white Gaussian noise was added to sev-
eral image sequences to demonstrate the error in com-
ponent velocity estimates as a function of the noise level.
Here we report results from two sequences—experi-
ments 2 and 4. The noise had a mean of zero with stan-
dard deviations ¢, up to 50. Relative to an 8-bit image
this is a significant amount of noise (cf. figure 9).
Figure 10 shows the decrease in the proportions of
errors falling within 1, 2, and 3 degrees of the correct
velocity as a function of ¢,. As expected, the accuracy
deteriorates with increased noise levels. However, note
that the total number of estimates that survived the
thresholds remained roughly constant. Furthermore, the
deterioration occurred smoothly and relatively slowly.
The high proportion of estimates within 3 degrees of
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Fig. 9 The tree image (left) is shown with additive mean-zero white Gaussian noise with standard deviations ¢, = 15 (middle) and o, = 40

(right).
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Fig. 10 Proportions of estimates with errors below 1, 2, and 3 degrees as a function of ¢, for single filters from the family. (zop) Image sequence
of experiment 2, and a filter tuned to normal velocities about 1.732 pixels/frame down to the right. (botton) Image sequence of experiment
5, and a filter tuned to normal velocities about 0.577 pixels/frame up toward the top.

the true velocity is especially encouraging. The sharper
increase in errors in figure 10 (bottom) arises from the
generally poorer performance in experiment 4, in con-
junction with the tuning of the filter to the low-contrast
horizontal image structure near the center of the image.
As is clear in figure 9, these regions are easily degraded
by small amounts of noise.

4.5 Rotating Sphere and Yosemite Sequence

The next two experiments involved synthetic image se-
quences depicting more complex scene structure. The

first sequence contained a rotating, textured sphere (fig-
ure 11). The second was the Yosemite image sequence
used by Heeger (1988) (figure 12).

For the rotating sphere the image size was 200200
with an angular field of view of 40 degrees (54 degrees
diagonally). The distance between the centroid of the
sphere and the focal point of the camera, was 4 times
the radius of the sphere. The rotation was 1.5 degrees/
frame about its centroid, with the axis of rotation given
by (45, 35) (degrees) in standard spherical coordinates.
This induces image speeds of up to 2.6 pixels/frame
along the equator, and O at the fixed point (see figure 19).
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Fig. 1I. Rotating sphere. 2-D image velocities were up to 2.6 pixel/frame along the equator and zero at the fixed point. (leff) One frame of
the image sequence. (right) Average component velocity error as a function of image location.

Fig. I2. Yosemite sequence. Velocities in the Yosemite sequence were predominately toward the left with speeds ranging from 0 to 4. The
clouds moved (nonrigidly) to the right at 1 pixel/frame. (leff) One frame from the sequence. (righf) Average component velocity error as a

function of image location.

Along the boundary of the sphere there was a large
amount of noise caused by the texture-mapping algo-
rithm. In addition, because of the loss of resolution
caused by the filter support, about 9% of the estimates
lay outside the projected boundary of the sphere. As
a result the extreme errors occur in this region. How-
ever, within the boundary of the sphere the accuracy
is similar to that in experiments 4 and 5, with 58%,
80%, and 89 % of the estimates having errors less than
1, 2, and 3 degrees. Outside the boundary of the sphere,
the estimates are still consistent with the motion of the
sphere as can be seen from the estimated 2D velocity
in section 5. When real images were texture-mapped
onto the sphere, instead of the checker-board pattern,
the results were similar.

With the Yosemite sequence, only 15 frames were
available. Therefore a smaller spatiotemporal window

of support (7 pixels-frames) was used with a corre-
sponding decrease in the spatiotemporal wavelength to
which the filters were tuned. All other parameter set-
tings and thresholds were identical to those used above.
The results are shown in figure 12. Performance with
the Yosemite sequence was similar to experiments 4 and
5. Like Heeger’s results, and those with the rotating
sphere, most of the extreme errors lie on the occlusion
boundaries. A few others are due to the cloud move-
ment for which we had no exact velocity information.
However, note that most of the sky region was domi-
nated by relatively low spatiotemporal frequencies to
which the filters were relatively insensitive. In a more
complete implementation (with more than one scale)
the cloud motion would be detected. Errors were also
due to aliasing and numerical error, as the filters were
tuned to the highest end of the frequency spectrum.



Excluding the sky region, about 85% of the image had
at least one component velocity estimate, with 60%,
79%, and 87 % of the estimates having errors less than
1, 2, and 3 degrees.

4.6 Transparency

Our final experiment in this section addresses the issue
of velocity resolution and the motion of transparent sur-
faces. Two samples of white Gaussian noise (mean zero
with ¢ = 250) were combined additively. The first
covered the entire image and was stationary. The sec-
ond, masked by the characteristic function shown in
figure 13 (top-left), moved with speed 1.5 pixels/frame
and direction 31 degrees. This roughly simulates the
motion of a textured object viewed through a window
on which there is the reflection of a stationary textured
surface. Our goal is simply to show that reliable esti-
mates of component velocity can be obtained within
a spatial region in which more than one motion exists.
Conversely, note that any technique based on purely
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spatial image properties (e.g., zero-crossings of V2G)
will yield incorrect results.

In order to demonstrate the velocity resolution, the
component velocity estimates were divided into three
groups according to whether they were consistent with
the stationary window, the moving object, or neither.
Consistency was defined in terms of the error between
the component velocity estimates and the constraint
planes of the 2D velocities (24). In particular, each esti-
mate was associated with the constraint plane to which
it was closest, unless it was not within 10 degrees of
either, in which case it was deemed inconsistent. Esti-
mates with orientations within 5 degrees of the direction
of motion were ignored as they would be consistent with
both motions.

Figure 13 shows the average (absolute) error (|| in
(24)) as a function of image location for the three
groups of estimates. As above, where there are no esti-
mates the pixel is black. In comparing the three images,
note first that the estimates consistent with the window
cover the entire image, while those consistent with the
moving object coincide essentially with the characteristic

Fig. I3. Transparency. The characteristic function for the moving object (top-left). The final three images show average (absolute) component
velocity error as a function of image location for the three groups of estimates that are consistent with the stationary window (fop-right), consistent
with the moving object (bortom-left), and consistent with neither (bottom-right).
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function. The mean (absolute) errors per pixel (aver-
aged over pixels with at least one estimate) for those
estimates consistent with the window and the object were
0.75 and 1.9 degrees respectively, with standard devia-
tions 0.7 and 1.6. Errors were generally worse in the
background where the window and object overlapped.
Pixels containing estimates consistent with neither sur-
face are sparsely distributed. The mean number of esti-
mates per pixel (averaged over pixels with at least one
estimate) for the three cases were 3.9 (¢ = 1.1) for the
stationary window; 2.8 (¢ = 1.4) for the moving tree;
and 1.1 (6 = 0.3) for the inconsistent estimates. Thus, in
addition to being sparsely distributed, rarely does more
than one inconsistent estimate appear at any one pixel.

5 Computing 2D Velocity

As a further demonstration of the accuracy of the compo-
nent velocity estimates it was decided to compute esti-
mates of 2D velocity in local patches with a least-squares
approach (cf. (Waxman and Wohn 1985)). The derivation
of the approach follows from (23), which gives the linear
constraint that each component velocity estimate imposes
on the local 2D velocity. In addition, we assume that
the local 2D velocity field reflects the relative motion
of a smooth surface, and may be approximated by

VX, D) = (g + apx + ), By + Bix + Bv) (28)

Each collection of local estimates therefore yields a sys-
tem of linear equations Ra = s in the six unknowns
a’ = (ag, 0y, a3, 8o, B, B3), where each component
velocity estimate v,ni provides one linear constraint:

(ﬁl’ ﬁ1x9 ﬁly’ ﬁZ, ’:i2x9 ﬁ?.y) a = {)’n (29)

A least-squares solution (assuming at least 6 local con-
straints) minimizes || Ra — s||2 where s is the vector
of normal speeds, V,.

The estimates of component velocity that satisfied
the constraints in section 4.1 were collected about each
pixel (on the subsampled grid) within a radius of 2 pix-
els. A singular-value decomposition (SVD) was then
used to determine the conditioning of the resultant sys-
tem (the condition number « is the ratio of the largest
to smallest singular-values of R). Condition numbers
greater than 10 were taken to reflect an insufficient
amount of local structure from which the 2D velocity
could be computed. This restricts the sensitivity of the
least-squares solution which is proportional to k. The

restriction on k may also be viewed in terms of the
minimal distribution of component velocities required
to compute the 2D velocity estimate. In particular, in
just two dimensions, k < 10 means that the input must
span at least 5 degrees of the constraint plane. We found
that with k < 10 a dense set of 2D velocity estimates
was usually obtained; condition numbers between 5 and
10 were common. When there was sufficient informa-
tion, the least-squares system was solved using the
pseudo-inverse provided by the SVD. Finally, we also
discarded estimates for which the residual error |Ra
— s |/|| s ||was greater than 0.5.

The estimated 2D velocity v was then taken to be
(ctg, Bo), the constant parameters in (28). The error inthe
estimated 2D velocities was taken to be the angle be-
tween the space-time direction vectors (v, 1) and (¥, 1):

v, D -, 1
VI +[v[EV1L + ]

This measure of error is consistent with that used for
component velocities, and complements the notion of
velocity in terms of space-time orientation. In particu-
lar, because the component velocity errors are typically
concentrated about the constraint plane (23), and are
uniformly distributed over orientation (cf. figure 6), we
expect that for reasonably well-conditioned systems, the
estimated 2D velocities will be concentrated within a
cone about the true velocity (v, 1) in space-time (see
figure 18). The opening angle of the cone depends on
the magnitude of errors in component velocity esti-
mates, and the distribution of estimates of the constraint
plane. Note that the absolute velocity error (v — V)
and the relative error (| v — ¥ |/| v ||) corresponding
to a given angular error (30) depend on speed | v |
These relationships are depicted in figure 14.
Figure 15 shows histograms of 2D velocity errors
from the 2D velocities computed from experiments 1,
4, and 5. The first three experiments, with predomi-
nantly translational velocity fields, produced the most
accurate estimates of component velocity, and hence
the most accurate 2D velocity estimates. Figure 15 (left)
is also characteristic of experiments 2 and 3. The cases
of dilation and rotation were not handled quite as well.
Despite this, the errors are almost all less than two
degrees. Figure 16 shows the estimated 2D velocity
fields for experiments 4 and 5. In both cases, the esti-
mated 2D velocities are sufficiently accurate that the
vector differences between the true and estimated veloc-
ities are not resolvable at this scale. Therefore the true

Y, = arccos |: :| (30)
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Fig. I5. Histograms of 2D velocity errors for experiments 1, 4, and 5. The corresponding components velocity errors are shown in figures 5-8.

velocities and vector differences are not shown (cf. fig- show the estimated 2D velocities, the true velocity
ure 19). Figure 17 shows the 2D velocity error (in fields, the vector differences between them, and their
degrees) as a function of spatial location. Note that the respective 2D velocity errors as a function of spatial
errors are concentrated along the boundaries of regions location. As shown in figures 11 and 12, both of these
without measurements where the component velocities sequences produce estimates that spread across occlu-
are not as accurate, and where the least-squares systems sions boundaries. This is also evident in figures 19 and
were less well conditioned. In particular, note that the 20. However, it is also clear that these estimates are gen-
errors near the flow singularities are not significantly erally consistent with the corresponding surface motion.
worse than in other areas. Finally, figure 18 shows his- Taking into account only those estimates within the
tograms of angular differences between the true and boundary of the sphere, the proportions of 2D estimates
estimated velocities in spherical coordinates for experi- with errors less than 1, 2, and 3 degrees were 72%,
ments 4 and 5. This helps to show that the errors are 88%, and 93 % . Over this region the errors are gener-
distributed evenly about the true velocities. ally uniform. In particular, the flow singularity is han-

2D velocity fields were also computed for the rotating dled well. Also note the vertical regions containing no

sphere and the Yosemite sequences. Figures 19 and 20 2D velocity estimates, where, from figure 11 (right),
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Fig. 16. Computed 2D velocity fields from experiments 4 (left) and 5 (right).

Fig. 17. 2D velocity errors for experiments 4 (left) and 5 (right) are shown as a function of image location.

it is clear that there were component estimates. Interest-
ingly, these regions fall precisely down the centers of
the wide rectangular checkers (cf. figure 11 (left)). Rela-
tive to the tuning of the filters to high spatiotemporal
frequencies, and the small radius within which the
component velocity estimates were combined to estimate
2D velocity, the structure in these regions is essentially
one dimensional. About the equator, however, the
checkers are somewhat foreshortened and the image
speeds are faster so that lower spatial frequencies will
stimulate those filters tuned to faster speeds. Hence there
is a greater density of significant filter activity and
therefore sufficient structure for the estimation of 2D
velocity. The regions currently without 2D estimates

would be filled in by filters tuned to lower spatiotermn-
poral frequencies in a more complete implementation
(with more than one scale). _

For the Yosemite sequence, if we neglect errors just
above the horizon in the sky region, then the propor-
tions of 2D velocity estimates with errors less than 1,
2, and 3 degrees are 45%, 71%, and 82%. Although
these results are not as good as those above, most of
the poor estimates of 2D velocity coincide with a poorly
conditioned system or a high residual error. For exam-
ple, when we discarded all estimates with condition
numbers greater than 5 (instead of 10), or residual
errors greater than 0.1 (instead of 0.5), the proportions
of errors below 1, 2, and 3 degrees increased to 63%,



Computation of Component Image Velocity 97

Fig. 18 Histograms of 2D velocity errors in spherical coordinates for experiments 4 and 5. The horizontal and vertical axes correspond to
error in orientation and speed. If the true and estimated 2D velocities are given by (8, ¢), and (8, ¢), then we increment location (6 — 6)

sin ¢, ¢ — 5). Both histograms have widths of 4 degrees.

89%, and 95% while the total number of estimates
dropped by about one third. This is important as it
means that the errors in the 2D velocity estimates were
due mainly to the conditioning of the least-squares sys-
tem, and not inaccuracy in the component velocity esti-
mates (which is our principal concern). Finally, note
that these results compare favorably with those obtained
with Heeger’s model, for which the histogram of errors
was relatively flat with about 90% of the estimates
having errors less than 25 degrees. The proportions of
estimates with errors less than 5, 10, and 15 degrees
were only 30%, 60%, and 80%. However, note that
Heeger used different spatiotemporal scales and larger
spatial support which leads to different results. In par-
ticular, it gives results in areas (e.g., the sky and the
lower right) where the present method does not.

6 Hamburg Taxi Sequence

Finally, we report results obtained from the Hamburg
laxi Sequence, which has been used extensively by
Nagel and Enkelmann (Enkelmann 1986; Nagel 1983;
Nagel and Enkelmann 1986). Unfortunately, the actual
motion field is unknown so that the results can only
be evaluated qualitatively. We used the same filters and
parameters as in all but the Yosemite sequence above.
There are 46 frames of the sequence. Velocity was com-
puted at frame 21, which is shown in figure 21 (left).
There are four moving objects in the scene: the taxi,
which has speeds of just under one pixel/frame; the
Golf in the lower left, which has speeds of about 3.75
pixels/frame; the van in the lower right, which is par-

tially occluded and exhibits speeds similar to the Golf;
and a pedestrian in the upper left, which moves down
to the left at about 0.3 pixels/frame. The branches of
the two trees are also moving slowly.

Figure 21 (right) shows where (in the image) esti-
mates of component velocities were obtained. Black
areas denote regions within which no estimates occur.
The darker grey areas denote regions in which all esti-
mates had normal speeds between 0 and 0015 pixels/
frame. The brighter areas show regions in which there
existed estimates with normal speeds greater than 0.15
pixels/frame. Estimates arising from the four main
moving objects are clear.

Figure 22 shows the 2D velocities that were computed
from the component estimates. In particular, figure 22
(top) shows the estimated speed (shown as intensity)
as a function of image location. The vector fields corre-
sponding to the four boxed areas are then shown below
(blown up so that the individual vectors are resolvable).
The black dots not joined to vectors represent speeds
close to 0. Note that not all regions with component
velocity measurements yielded 2D estimates due to the
local nature of the computation. This is particularly evi-
dent along the rear windows of the taxi cab. Also, from
figures 21 and 22, note the large number of estimates
in low-contrast regions (e.g., the street marking to the
right of the taxi). The robustness of local phase behavior
as compared to amplitude is especially clear in areas
of low contrast.

Finally, note that no smoothing has been applied to
these measurements. This is important in comparing the
results to other techniques that impose smoothness con-
straints to the raw measurements (Nagel and Enkelmann
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Fig. 19. (top-lef) True (induced) 2D velocity field from the rotating sphere. (top-right) Estimated 2D velocities. (bottom-leff) The vector difference
between the two fields. (bottom-right) Velocity error as a function of image location.

1986). Similarly, it is important to remember that our
objective in computing 2D velocity from the component
velocity estimates was to illustrate the accuracy of the
component velocity estimates. However, as mentioned
in the introduction, the integration of local measure-
ments implicitly assumes that they arise from the same
physical object. Here, a unique 2D velocity arising from
a single object is assumed within each local neighbor-
hood. The velocity estimates near the front of the van

in figure 22 (bottom-right) show that this is, in general,
inappropriate. In this case, measurements from a tree
branch and the van are combined, and yield a good fit
to 2D velocity (with low residual error). Subsequent
smoothing of the velocity estimates would aggravate the
problem. This result supports our approach of consider-
ing the inference of 2D velocity from component veloc-
ities as an interpretation issue that is distinct from meas-
urement. An appropriate framework for performing this
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interpretation in the face of multiple moving objects is
an important area for future study.

7 Summary and Discussion

Component velocity was defined in terms of the gra-
dient of the phase output of individual velocity-tuned
linear filters. The approach involves two main stages
of processing:

e The time-varying image is first represented with a
family of constant-phase velocity-tuned filters.

¢ The local phase gradient is then measured from the
output of the individual filter types to obtain estimates
of component velocity.

It was argued that this use of phase information yields

accurate and robust estimates of component velocity.

In particular, local phase information was shown to be

more robust than amplitude under variations in lighting
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Fig. 21. Hamburg taxi sequence. (left) Frame 21. (righf) Regions with no component velocity estimates are black. Grey and white regions
correspond to regions containing component velocity estimates with normal speeds between 0 and 0.15 pixels/frame and greater than 0.15 pixels/

frame respectively.

conditions, relative surface orientation, as well as under
changes in local orientation, wavelength, and speed
caused by geometric deformation in space-time. As a
consequence, the assumptions of constant amplitude
and the translation of filter outputs are relaxed. It was
also argued that the use of phase behavior may be
viewed as a generalization of the use of zero-crossing
contours, and leads to a denser set of velocity estimates.
Finally, it was shown that the expression of component
velocity in terms of local phase behavior is consistent
with that in terms of spatiotemporal frequency.

The technique’s accuracy, robustness, and localization
in space-time were demonstrated through a series of
experiments involving image sequences of textured sur-
faces moving in 3D under perspective projection. Many
of the cases considered involved sizable time-varying
perspective deformation. The width of support (in all
but the Yosemite sequence) was limited to 5 pixels
(frames) in space (time, respectively) at one standard
deviation. In most experiments with reasonably large
amounts of dilation, rotation, and shear, we find that
approximately 65-80% of the errors are less than 1
degree, 80-90% are within 2 degrees, and the propor-
tion within 3 degrees is generally greater than 90%.
In cases dominated by image translation (section 4.2.2)
the estimates are even more accurate, often with 90%
of all estimates having errors less than 1 degree. As
shown in section 5 this accuracy yields local estimates
of 2D velocity that are also very accurate, with most
estimates within 2 degrees of the correct 2D velocity.
As shown in figure 14, a speed error of 2 degrees
amounts to relative errors of 6-10%. This subpixel
accuracy compares favorably with the approaches of
Heeger (1988) (as discussed in section 5); Duncan and

Chou (1988), who report relative errors of 20% on real-
istic images; Little et al. (1988), whose technique is
limited to integer pixel velocities per frame; and Wax-
man et al. (1988), who claim relative errors of 10%.
Finally, the results reported in section 6 with the Ham-
burg Taxi Sequence are accurate compared with those
previously reported (Enkelmann 1986; Nagel 1983;
Nagel and Enkelmann 1986).

Other important properties of the approach are as fol-
lows: First, it is image-independent in that specific fea-
tures or tokens are not a prerequisite. As a consequence,
problems associated with their detection, localization,
descriptive richness, and matching are avoided. For
example, with zero-crossings there remain questions
concerning the robustness of detection and localization
(Jenkin and Jepson 1988). Moreover, as noted by Wax-
man et al. (1988) and Duncan and Chou (1988), there
are also problems in areas of high edge density. Second,
the present approach also differs from most others in
that, because of the initial representation, the image
structure is separated to some degree based on velocity
and scale, so that multiple velocity estimates are allowed
in local neighborhoods. This may be useful in the case
of transparency, or partial occlusion. Third, the resul-
tant computational scheme is efficient, and suitable to
parallel processing. Each velocity-tuned channel may
be handled independently, and the various stages of proc-
essing are predominantly local, linear, shift-invariant,
and separable in space-time. Finally, the questions of
smoothing and filling-in of regions with no measure-
ments are postponed as they are considered distinct
issues of interpretation.

With respect to the initial filters we note the following
properties: (1) The technique is not strictly limited to
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the use of Gabor kernels. Other filters can be used,
such as inseparable kernels with nonunit aspect ratios,
as long as they occur in quadrature pairs and exhibit
constant phase properties. (2) A relatively small band-
width is important because it reduces sensitivity to
mean illumination and low frequencies. (3) The initial
representation based on the filter outputs is efficient
because it is subsampled at a reasonable rate and quan-
tized. It is hoped that with better forms of interpolation
even lower sampling rates can be tolerated with similar
or better accuracy.

Acknowledgments

Comments from David Heeger, Evangelos Milios.
Michael Mohnhaupt, and Whitman Richards have
helped to improve the clarity of the paper. We also thank
David Heeger for providing his results and the Yosemite
image sequence (created by Lynn Quam at SRI Inter-
national). Part of this work was completed while the
first author was visiting the Cognitive Systems Group
at the University of Hamburg. Financial support from
NSERC, ITRC, the University of Toronto, and the Uni-
versity of Hamburg is appreciated.

References

E.H. Adelson and J.R. Bergen, “Spatiotemporal energy models for
the perception of motion,” J. Opt. Soc. Amer. A 2: 284-299, 1985.

E.H. Adelson and J.R. Bergen, “The extraction of spatiotemporal
energy in human and machine vision,” Proc. IEEE Workshop on
Motion, Charleston, pp. 151-156, 1986.

P. Anandan, “A computational framework and an algorithm for the
measurement of visual motion,” Intern. J. Comput. Vision 2:
283-310, 1989.

J.L. Barron, ‘“‘Computing motion and structure from time-varying
image velocity information.” Ph.D. thesis, Computer Science Dept.,
University of Toronto; available as TR: RBCV-TR-88-24), 1988.

R.N. Bracewell, The Fourier Transform and Its Applications. McGraw-
Hill: New York, 1978.

P.J. Burt and E.H. Adelson, “The Laplacian pyramid as a compact
image code,” IEEE Trans. Commun. 31: 532-540, 1983.

P.J. Burt, C. Yen, and X. Xu, “Multiresolution flow-through motion
analysis,” Proc. IEEE Conf. Comput. Vision Pattern Recog.
Washington, pp. 246-252, 1983.

B.F. Buxton and H. Buxton, “Computation of optic flow from the
motion of edge features in image sequences,” Jmage Vision Comput.
2: 59-75, 1984.

JG. Daugman, “Pattern and motion vision without Laplacian zero
crossings,” J. Opt. Soc. Amer. A 5: 1142-1148, 1987.

JG. Daugman, “Uncertainty relation for resolution in space, spatial
frequency, and orientation optimized by two-dimensional visual
cortical filters,” J. Opt. Soc. Amer. A 2: 1160-1169, 1985.

D.E. Dudgeon and R.M. Mersereau, Multidimensional Digital Signal
Processing. Prentice-Hall: Englewood Cliffs, NJ, 1984.

JH. Duncan and T.C. Chou, ‘“Temporal edges: The detection of
motion and the computation of optical flow,” Proc. 2nd Intern.
Conf. Comput. Vision, pp. 374-382, Tampa, 1988.

W. Enkelmann, “Investigations of multigrid algorithms for the estima-
tion of optical flow fields in image sequences,” Proc. IEEE Work-
shop on Motion, pp. 81-87, Charleston, 1986.

D.I Fleet, “Measurement of image velocity,” Ph.D. dissertation,
Dept. of Computer Science, University of Toronto, 1990.

D.J. Fleet and A.D. Jepson, “A cascaded filter approach to the con-
struction of velocity selective mechanisms,” Technical Report:
RBCV-TR-84-6, Dept. Computer Science, Univ. of Toronto, 1984.

D.J. Fleet and A.D. Jepson, “Hierarchical construction of orientation
and velocity selective filters,” IEEE Trans. PAMI 11: 315-325, 1989.

D. Gabor, “Theory of communication,” J. IEEE 93: 429-457, 1946.

L.W. Gardenhire, “Selecting sampling rates,” Proc. 19th Instrument
Soc. Amer. Conf., July 1964.

F. Glazer, “Hierarchical gradient-based motion detection,” Proc. DARPA
Image Understanding Workshop, pp. 733-748, Los Angeles, 1987.

D.J. Heeger, “A model for the extraction of image flow,” J. Opt. Soc.
Amer. A 4: 1455-1471, 1987.

D.J. Heeger, “Optical flow using spatiotemporal filters,” Intern. J.
Comput. Vision 1: 279-302, 1988.

B.K.P. Horn and BG. Schunck, “Determining optic flow,” Artificial
Intelligence 17: 185-204, 1981.

H.S. Hou and H.C. Andrews, “Cubic splines for image interpolation
and digital filtering,” IEEE Trans. Acoustics, Speech, and Signal
Process. 26: 508-517, 1978.

M. Jenkin and A.D. Jepson, “The measurement of binocular dis-
parity.” In Z. Pylyshyn (ed.), Computational Processes in Human
Vision. Ablex Publishing: Norwood, NJ, 1988.

A.D. Jepson, “Discrete scale-space, multi-scale image representation,
and interpolation,” in preparation, 1989.

J.J. Koenderink and A.J. van Doorn, “Local structure of movement
parallax of the plane,” J. Opt. Soc. Amer. 66: 717-723, 1976.
1.J. Little, H.H. Bulthoff, and T. Poggio, ‘“Parallel optical flow using
local voting,” Proc. 2nd Intern. Conf. Comput. Vision, pp. 454-459,

Tampa, 1988.

H.C. Longuet-Higgins and K. Prazdny, “The interpretation of a moving
retinal image,” Proc. Roy. Soc. London B 208: 385-397, 1980.

D. Marr and S. Ullman, “Directional selectivity and its use in early
visual processing,” Proc. Roy. Soc. London B 211: 151-180, 1981.

J. Mayhew and J. Frisby, “Computational studies toward a theory
of human stereopsis,” Artificial Intelligence 17: 340-385, 1981.

H.H. Nagel, “Displacement vectors derived from second-order inten-
sity variations in image sequences,” Comput. Vision Graph. Image
Process. 21: 85-117, 1983.

H.H. Nagel and W. Enkelmann, “An investigation of smoothness
constraints for the estimation of displacement vector fields from
image sequences,” JEEE Trans. PAMI 8: 565-593, 1986.

A.N. Netravali and J.O. Limb, “Picture coding: A review,” Proc.
IEEE 68: 366-406, 1980.

AV. Oppenheim and RW. Shafer, Digital Signal Processing. Prentice-
Hall: Englewood Cliffs, NJ, 1975.



T. Sanger, “Stereo disparity computation using Gabor filters,” Biol.
Cybern. 59: 405-418, 1988.

J.P.H. van Santen and G. Sperling, “Elaborated Reichardt detectors,”
J. Opt. Soc. Amer. A 2: 300-321, 1985.

RW. Schafer and L.R. Rabiner, “A digital signal approach to interpo-
lation,” Proc. IEEE 61: 692-702, 1973.

D. Slepian, “Some comments on Fourier analysis, uncertainty and
modelling,” Siam Review 25: 379-393, 1983.

K.M. Ty and A.N. Venetsanopoulos, “Sampling non-bandlimited
signals,” Proc. Telecon '84, Halkidiki, Greece, 1984.

A.B. Watson and A.J.-Ahumada, “Model of human visual-motion
sensing,” J. Opt. Soc. Amer. A 2: 322-342, 1985.

A .M. Waxman and K. Wohn, “Contour evolution, neighbourhood
deformation and global image flow: Planar surfaces in motion,”
Intern. J. Robotics Res. 4: 95-108, 1985.

A.M. Waxman, J. Wu, and F. Bergholm, “Convected activation pro-
files: Receptive fields for real-time measurement of short-range
visual motion,” Proc. IEEE Conf. Comput. Vision Pattern Recog.
pp. 7T17-723, Ann Arbor, 1988.

G.B. Whitham, Linear and Nonlinear Waves. Wiley: NY, 1974.

Appendix: Computation of Phase Gradient

From equation (17), the phase gradient is computed
straight-forwardly in terms of the filter output R(x, f)
and its gradient VR(x, ¢). Here we assume that the filter
output has been subsampled using space-time sampling
distances S = (5, S, S3). Let the nodes of the sam-
pling lattice (i.e., the sampling locations) be given by
S[m] = Ef;l m; S; e; where m € Z3 and the vectors g;
are standard basis vectors for R? (columns of the identity
matrix). Finally, for notational convenience, throughout
the appendix let the space-time variables (x, #) be
denoted by x = (x4, X,, X3), and their respective Fourier
variables (k, w) by k = (ky, k,, k3). Our goal is to derive
estimates of R(x, 7) and VR(x, ) from the sub-sampled
filter output.

It is convenient to view the bandpass filter response as

R(X) = M(x)C(x) where C(x) = &*%, (31)

and K is the peak tuning frequency of the filter in ques-
tion. From (31), VR(x) has the form

VR(x)

VMX)C(x) + M(x)VC(x)

VME)C(x) + iKkoR(x) (32)

Because M(x) is a lowpass signal it may be interpolated
and differentiated from a subsampled representation
using standard methods (Dudgeon and Mersereau
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1984). This is treated below as a precursor to the ex-
plicit interpolation and differentiation of R(x).

A subsampled encoding of M(x), that is, M(S{m])
= R(S[m])C(—S[m]), can be interpolated as

M) =23 >} 2 M(Sm]) Ox — S[m]) (33)
my, m, m,
where Q(x) is an appropriate interpolation kernel. The
derivatives of M(x) have the same form:

M) =25 D23 2] MSIm]) Q,(x — Sim])  (34)
mg m, m;

If M(x) was strictly lowpass, then the appropriate in-
terpolant Q(x) would be a (separable) product of three
sinc functions (Dudgeon and Mersereau 1984). Both
(33) and (34) can therefore be viewed as cascades of
three 1D convolutions. If V¢(x) is computed only at
nodes of the sampling lattice, then M(x) is given directly
by the subsampled representation (without interpola-
tion), and (34) reduces to a single 1D convolution with
the differentiated interpolant.

In order to obtain expressions for E(X) and Vﬁ(x)
in terms of explicit interpolation and differentiation of
the subsampled filter output R(S[m]), we can replace
M(S[m)) in (33) and (34) with R(S[m])C(—S[m]). For
instance, (34) becomes

M) = C(=x25 25 25 {RSmD

X Cx — Sm]) Q,(x — S[m])} 35

Therefore, instead of demodulating the filter output
before subsampling, we simply modulate the appropriate
interpolation/differentiation kernel. After substitution
into (31) and (32) we now have expressions for R(x, 7)
and VR(x, ) in terms of the subsampled filter output.
In the experiments reported in section 4, V(x) was
computed only at the nodes of the sampling lattice (i.e.,
with x = S[m] for m € Z3). In this case, R(x) is given
explicitly at the sampling points, and its derivative,
ij(x) = ij(x)C(x) + i(e; * Ko)R(x), reduces to

ﬁxj(x) C(%) Y, M(x — ne)h(n)

+ i(ej * ko)R(x) (36)

i

CE)C(—%) >, Rx — ne)e™ s p(n)

+ i(e; * KR(X) 37
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= >, R(x — ne)H(n)
1 ife; - kOR(X) (38)

where h(n) is an appropriate kernel for numerical dif-
ferentiation of a low-pass signal, and H(x) = h(x)c(x)
is the new kernel that is to be applied directly to
R(S[m]).

For appropriately bandlimited signals, the interpola-
tion error decreases as the spatiotemporal extent of the
interpolating kernel increases. Toward efficiency and
localization in space-time, it is desirable to limit their
extent. Rather than use a truncated sinc function, more
accurate interpolants can be found either in low-order
polynomials, in splines, or through optimization tech-
niques (e.g., (Hou and Andrews 1978; Oppenheim and
Schafer 1975; Shafer and Rabiner 1973)). The choice
of interpolant is important because it affects the choice
of subsampling rate for the Gabor outputs. In general,
the appropriate subsampling rate depends on several
factors including (1) the input spectral density, (2) the
form of interpolation, and (3) a tolerance bound on

reconstruction error. For 1D signals with Gaussian
power spectra, interpolation with local polynomial
interpolants (e.g., 4 or 5 points) is generally possible
to within 5% RMS error if the sampling rate is one
complex sample every ¢ (following Gardenhire (1964)
and Ty and Vanetsanopoulos (1984)). As mentioned in
section 2.4 we adopted this rate. However, because we
also consider the measurement of derivatives, this is
not an overly generous rate. On the other hand, because
a higher sampling rate means a significant increase in
computational expense, it is clear that the relationship
between sampling rates and appropriate form of interpo-
lation/differentiation deserves further attention (although
this is beyond the current paper).

With respect to section 4, we base the numerical dif-
ferentiation on a standard 4-pt central-difference for-
mula with coefficients i(n) = (1/12s) (—1, 8,0, —8, 1),
where s is the sampling distance. The corresponding
kernel that was applied to R(S[m]) to find Rx.(x) is
therefore given by H(n) = (1/12s) (—e ™5, SeJi‘kj, 0,
—8¢™Y, &%), where k; = ¢; * K.



