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Abstract. In this paper, we suggest a variational model for optic flow computation based on non-linearised
and higher order constancy assumptions. Besides the common grey value constancy assumption, also gradient
constancy, as well as the constancy of the Hessian and the Laplacian are proposed. Since the model strictly refrains
from a linearisation of these assumptions, it is also capable to deal with large displacements. For the minimisation
of the rather complex energy functional, we present an efficient numerical scheme employing two nested fixed
point iterations. Following a coarse-to-fine strategy it turns out that there is a theoretical foundation of so-called
warping techniques hitherto justified only on an experimental basis. Since our algorithm consists of the integration
of various concepts, ranging from different constancy assumptions to numerical implementation issues, a detailed
account of the effect of each of these concepts is included in the experimental section. The superior performance of
the proposed method shows up by significantly smaller estimation errors when compared to previous techniques.
Further experiments also confirm excellent robustness under noise and insensitivity to parameter variations.
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1. Introduction

Optic flow estimation certainly belongs to one of the
most crucial and well-investigated tasks in computer
vision. This task is of surprisingly general nature
encountered not only in motion estimation but also in
3D-reconstruction and image registration, for short, ev-
erywhere where correspondences between pixels have
to be calculated. Starting with the classical works of

Horn and Schunck (1981) as well as Lucas and Kanade
(1981), the last two decades have seen a tremendous
improvement in the quality of optic flow estimation
techniques. For example, the quadratic regulariser in
the Horn and Schunck model has been replaced by
smoothness constraints allowing piecewise smooth
results and discontinuities in the flow field (Alvarez
et al., 1999; Aubert et al., 1999; Black and Anandan,
1991; Cohen, 1993; Deriche et al., 1995; Heitz and
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Bouthemy, 1993; Kumar et al., 1996; Nagel, 1983;
Nesi, 1993; Proesmans et al., 1994; Schnörr, 1994;
Shulman and Hervé, 1989; Weickert and Schnörr,
2001). Some of the underlying ideas are in spirit related
to methods for joint motion estimation and motion seg-
mentation (Farnebäck, 2001; Mémin and Pérez, 2002;
Cremers, 2003), and to optical flow methods motivated
from robust statistics where outliers are penalised
less severely (Black and Anandan, 1991, 1996). The
problem of large displacements has been tackled by
coarse-to-fine strategies (Anandan, 1989; Black and
Anandan, 1996; Mémin and Pérez, 1998, 2002; Bruhn
et al., 2005) as well as by non-linearised models
(Nagel and Enkelmann, 1986; Alvarez et al., 2000).
Furthermore, results have been enhanced merely by
augmenting spatial approaches with an additional tem-
poral dimension (Murray and Buxton, 1987; Nagel,
1990; Black and Anandan, 1991; Elad and Feuer,
1998; Weickert and Schnörr, 2001; Farnebäck, 2001).

Undoubtedly, in the field of optic flow estimation
considerable progress has been made thanks to many
newly contributed ideas. But also efforts towards a
deeper understanding of how methods actually work
in detail and how parameter changes effect the out-
put instigate the design of advanced and highly effec-
tive models. Moreover, the abundance of sophisticated
methods from numerical optimisation theory became
utilisable to the optic flow community as soon as mod-
els have been cast in a variational form.

The energy functional presented in this paper puts
into effect the idea of using a variational formulation.
Besides the standard assumption of grey value con-
stancy, common to almost all optic flow schemes, the
model incorporates constancy assumptions based on
the image gradient and the Hessian. This makes the
proposed technique more robust against illumination
changes. The constancy of the gradient has been used
earlier in Uras et al. (1988) and Tistarelli (1994) in or-
der to overcome the aperture problem (Bertero, 1988)
of local optic flow schemes. For variational approaches
it has been mentioned in Schnörr (1994), yet the im-
plementation of this concept in a variational model has
not been tried in practice so far.

The second important feature of the model proposed
in this paper is the formulation of all constancy assump-
tions in their original, nonlinear form. This results in a
more accurate modelling of the optic flow, especially
in the presence of large displacements. As of now such
a nonlinear formulation has been employed only in
the case of the grey value constancy assumption alone

(Nagel and Enkelmann, 1986; Alvarez et al., 2000).
Here, also the constancy assumptions based on spa-
tial derivatives are integrated into the model without
linearisation.

In order to deal with this nonlinear model in a
numerically efficient way that avoids possible local
optima, we take advantage of a coarse-to-fine strat-
egy. In combination with two nested fixed point iter-
ations, one obtains not only a minimisation scheme
that addresses the occurring nonlinearities, but one
can also show that so-called warping techniques as
used in Anandan (1989), Black and Anandan (1996)
and Mémin and Pérez (1998, 2002) can be theoreti-
cally justified as numerical approximations of a sin-
gle variational model containing non-linearised con-
stancy assumptions. Up to now, the warping technique
has been motivated from an algorithmic point of view
only.

Several experiments give evidence for the superior
performance of the proposed method. Comparison to
the best results reported in the current literature reveals
that our optic flow results are up to twice as accurate.
Moreover, the method shows an appealing robustness
w. r. t. noise and variation of the parameters together
with reasonable computation times of only a few sec-
onds on contemporary hardware.

Since our approach is based on the combination of
several important concepts, most of which have also
been successfully employed before, we also investigate
the impact of each of these concepts in experiments,
where the complexity of the model is increased step by
step.

The remainder of this article is structured as fol-
lows: Section 2 introduces the variational model and
discusses all underlying constancy assumptions. The
numerical minimisation procedure is then described in
Section 3. This leads to the theoretical foundation of
warping approaches as a minimisation method for non-
linear data terms which is subject of Section 4. Section
5 reports on the experimental evaluation, whereas a
short summary concludes the article in Section 6.

This paper extends work previously published at a
conference (Brox et al., 2004). Substantial differences
are, among other things, the introduction of additional
constancy assumptions based on higher order deriva-
tives, their integration into the numerical scheme, and
a more extensive experimental evaluation in general.
In particular, as the proposed method consists of sev-
eral different concepts, the individual influence of
each of these concept on the quality of the results is
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investigated. This is sought to address the question why
the proposed method reveals such a good performance.

2. Model

The proposed optic flow model is based on a variational
approach, i.e. all model assumptions are formulated
by means of an energy optimisation problem. In this
section we introduce the energy functional that is to
be minimised. In order to motivate this functional we
consider I : R

3 ⊃ � → R as an image sequence
with two spatial and one temporal dimension at points
x = (x1, x2, t)�. We wish to determine the flow field
u = (u1, u2, 1)�, ui : � → R

2, i = 1, 2, representing
the displacement between two frames at times t and
t + 1. In the following, all model assumptions present
in our approach are introduced individually.

2.1. Constancy Assumptions

Estimating motion entails the solution of a correspon-
dence problem. That is, what pixel in one frame cor-
responds to what pixel in the other frame. In order to
find these correspondences one needs to define some
property or quantity that is not affected by the displace-
ment. The common assumption is that the pixels’ grey
values stay constant during motion. In this paper it is
shown that also other constancy assumptions are pos-
sible and can reveal certain advantages in comparison
to the basic grey value constancy assumption.

Since it is advantageous for deriving the minimisa-
tion scheme, we mainly focus on constancy assump-
tions that can be expressed in the following form:

‖L ◦ I (x + u) − L ◦ I (x)‖2
l2

= 0 (1)

where L stands for a linear differential operator, like
the identity operator in the case of the classical grey
value constancy assumption, and ‖·‖l2 indicates the
l2-norm as the square root of the sum of the squared
vector/matrix components.

It is to be noted that the expression within the norm is
nonlinear in u. Since this causes problems when seek-
ing to minimise the energy, this expression is mostly
linearised by a first order Taylor expansion. The lin-
ear formulation of the constancy assumptions has the
advantage that the algorithm for minimising the re-
lated energy inherits this linearity and hence is easier to
solve. However, the linear approximation is sufficiently

accurate only if the gradient in the image changes lin-
early along the displacement, which is usually not the
case, in particular in the presence of large displace-
ments.

Actually, the original nonlinear formulation is the
correct one. The only problem is that the minimisation
of the corresponding energy functional requires a much
more sophisticated numerical treatment. How such a
minimization scheme can be designed is one of the
topics of the present paper. In particular, we investigate
the following non-linearised constancy assumptions.

• Constancy of the grey value
Generally the grey value of the pixel is assumed not
to change during the movement:

∀x ∈ � : D1(I, u, x) := ‖I (x + u) − I (x)‖2
l2

= 0.

In a linear formulation this assumption leads to the
well-known optic flow constraint

∀x ∈ � : Ix1 u1 + Ix2 u2 + It = 0,

as it has been formulated, for instance, in the clas-
sical algorithms of Horn and Schunck (1981) and
Lucas and Kanade (1981). Subscripts denote partial
derivatives.

Although this constancy assumption works fine in
many cases, algorithms that rely only on this prerequi-
sit cannot deal with image sequences with either local
or global change in illumination. For image sequences
where such settings appear, other constancy assump-
tions that are invariant against brightness changes are
to be applied. Invariance can be ensured, for instance,
by considering (spatial) derivatives.

• Constancy of the gradient
A global change in illumination both shifts and/or
scales the grey values of an image sequence. Shifting
the grey values will not affect the gradient. Contrary,
scaling of the grey values changes only the length
of the gradient vector, but not its direction. As a
consequence, we assume that the spatial gradients
of an image sequence can be considered as constant
during motion:

∀x ∈ � : D2(I, u, x)

:= ‖∇ I (x + u) − ∇ I (x)‖2
l2

= 0,
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where ∇ = (∂x1 , ∂x2 )� denotes the spatial gradient.
A linearised formulation of this assumption can be
found in Uras et al. (1988) and reads:

∀x ∈ � :
Ix1x1 u1 + Ix1x2 u2 + Ix1t = 0,

Ix2x1 u1 + Ix2x2 u2 + Ix2t = 0.

• Constancy of the Hessian
It is not difficult to consider also higher order deriva-
tives for the formulation of constancy assumptions.
One choice including second order derivatives is the
Hessian matrix H2:

∀x ∈ � : D3(I, u, x)

:= ‖H2 I (x + u) − H2 I (x)‖2
l2

= 0.

Not all constancy assumptions based on derivatives
are equally well-suited to estimate different types of
motion. Both the gradient and the Hessian contain
directional information. This has positive effects on
the estimation of translational and divergent motions,
since one obtains more than one constraint, which can
improve robustness of the estimation technique. On
the other hand, directional motion can be subject to
changes when objects rotate, for example. Although
a rather large rotation is needed to cause significant
problems, constancy assumptions that include direc-
tional information are not optimal in such cases.

• Constancy of the Laplacian
One feature invariant against directional changes is
the trace of the Hessian, which comes down to the
Laplacian. The Laplacian can also be used to formu-
late a constancy assumption:

∀x ∈ � : D4(I, u, x)

:= ‖�I (x + u) − �I (x)‖2
l2

= 0,

where � = ∂x1x1 + ∂x2x2 denotes the spatial Lapla-
cian.

Despite the fact that the following additional invariants
cannot be rewritten in the form stated in (1), they are
worth a brief mentioning.

• Constancy of the gradient norm
The spatial gradient in an arbitrary pixel of an image
sequence can be decomposed into its norm and the
directional part. While the directional information
is changed by rotation, the norm of the gradient re-
mains unaltered. Therefore, this quantity is useful for

the formulation of another constancy assumption:

∀x ∈ � : D5(I, u, x)

:= (‖∇ I (x + u)‖ − ‖∇ I (x)‖)2 = 0.

Further invariants can be derived from the spatial
Hessian.

• Constancy of the norm of the Hessian

∀x ∈ � : D6(I, u, x) := (‖H2 I (x + u)‖
−‖H2 I (x)‖)2 = 0

• Constancy of the determinant of the Hessian

∀x ∈ � : D7(I, u, x) := (det H2 I (x + u)

−det H2 I (x))2 = 0
Of course, it is possible to formulate constancy as-
sumptions that utilise derivatives of order larger than
two, but for the sake of brevity we will not discuss them
in this paper. One should also note that higher order
derivatives can be expected to yield a larger sensitivity
to noise. Furthermore, the part of the image where the
derivatives become zero, and hence do not provide any
information, increases with the order of the derivatives.

A short summary of the proposed data terms is given
in Table 1.

2.2. Smoothness Assumptions

A model for motion analysis that relies solely on con-
stancy assumptions is in general not capable to deter-
mine the optic flow uniquely, especially in homoge-
neous areas. This problem is known as the aperture
problem. Furthermore, it is reasonable to introduce a
certain dependency between neighbouring pixels in or-
der to deal with outliers caused by noise, occlusions,
or other local violations of the constancy assumption.

This is achieved by augmenting the model with a
smoothness assumption for the flow field. Horn and
Schunck proposed in their model the following regu-
lariser term (Horn and Schnuk, 1981):

Esmooth(u) =
∫

�

|∇u1|2 + |∇u2|2dx. (2)

However, such a smoothness assumption does not re-
spect discontinuities in the flow field. In order to be
able to capture also locally non-smooth motion, it is
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Table 1. Overview of the presented constancy assumptions, their nonlinear formulation and the kind of motion they are used for.

Constancy assumption Data term Motion

D1 Grey value ‖I(x + u) − I(x)‖2
l2 all

D2 Gradient ‖∇ I(x + u) − ∇ I(x)‖2
l2 translational divergent

D3 Hessian ‖H2 I(x + u) − H2 I(x)‖2
l2 translational divergent

D4 Laplacian ‖� I(x + u) − � I(x)‖2
l2 all

D5 Norm of gradient (‖∇ I(x + u) ‖− ‖∇ I(x)‖)2 all

D6 Norm of hessian (‖H2 I(x + u) ‖− ‖H2) I(x)‖)2 all

D7 Determinant of hessian (det H2 I(x + u) − det H2 I(x))2 all

necessary to allow outliers in the smoothness assump-
tion. This can be achieved by a non-quadratic penaliser
function:

Esmooth(u) =
∫

�

�(|∇u1|2 + |∇u2|2)dx. (3)

In this way a piecewise smooth flow field is mod-
elled. The penaliser function � is chosen as �(s2) =√

s2 + ε2 which yields the total variation regulariser
proposed in Rudin et al. (1992) and Acar and Vogel
(1994) for image denoising leading to a pseudo L1-
minimisation. The quantity ε is not an additional pa-
rameter, but rather ensures the differentiability of � in
s = 0. It is chosen reasonably small, ε = 0.001, say.

Various other smoothness assumptions have been
proposed and classified in the literature, e. g. the reader
is referred to Weickert and Schnörr (2001) for further
information.

Instead of solely assuming spatial smoothness, one
can also introduce a spatio-temporal smoothness as-
sumption (Nagel, 1990; Weickert and Schnörr, 2001).
This is achieved by simply replacing the spatial gra-
dient operator ∇ in the smoothness assumption by the
spatio-temporal gradient ∇3 = (∂x1, ∂x2, ∂t ). While the
method containing the spatial smoothness later on is
marked as “2D”, we distinguish the method with the
spatio-temporal smoothness assumption as “3D”. Note
that due to the non-quadratic penalizer, spatio-temporal
smoothness still allows discontinuities along the tem-
poral axis.

2.3. Energy

A reasonable energy functional for optic flow esti-
mation consists of a data term, which integrates the
constancy assumptions, and a smoothness term intro-
ducing a smoothness assumption. In most cases it is
not possible that both assumptions can be fulfilled at

the same time. Hence, there is a competition between
both assumptions leading to the optimal compromise
for the minimiser of the energy. The relative impor-
tance of each assumption is steered by a parameter α.
This leads to the first coarse description of the energy
functional

E(u) = EData(u) + α ESmooth(u).

The smoothness term has already been defined in Sec-
tion 2.2. For the construction of the data term, the
constancy assumptions introduced earlier in Section
2.1 can serve as building blocks. The data term is de-
signed such that it penalises the global deviation from
the ideal model assumptions D1, . . . , D4. Since we
have several criteria at our disposal, the data term may
take all of the model assumptions into account. Thus it
consists of a combination of the quantities Di weighted
with positive real numbers γ i,

EData(u) =
∫

�

∑
i

γi Di (I, u, x)dx.

This allows an adaptation to the image sequence at
hand. In order to make the data term more robust
with respect to outliers (Hampel et al., 1986; Huber,
1981) we further apply the same non-quadratic pe-
naliser function � : R → R as in the smoothness
term:

EData(u) =
∫

�

�

(∑
i

γi Di (I, u, x)

)
dx.



146 Papenberg et al.

3. Numerical Solution

The energy functional defined in the last section de-
scribes an elaborated model for accurately estimating
optic flows in various settings. However, the difficulty
how to optimise this functional still remains unsolved.
The energy functional contains several nonlinear terms,
which make a minimisation non-trivial. In this section
we introduce an iteration scheme which provides such
a minimisation.

In a first step we restrict ourselves to a slightly sim-
plified model where we only take the grey value con-
stancy into account. In the final part of this section the
scheme is extended to include also data terms of higher
order. The simplified model reduces to

E(u) =
∫

�

�((I (x + u) − I (x))2) dx

+ α

∫
�

�(‖∇u1‖2 + ‖∇u2‖2) dx. (4)

The corresponding Euler-Lagrange equations that have
to be satisfied by a function u mimimising the energy
(4) can be written as

� ′(I 2
z

) · Iz Ix1

−α div(� ′(‖∇u1‖2 + ‖∇u2‖2)∇u1) = 0

� ′(I 2
z

) · Iz Ix2

−α div(� ′(‖∇u1‖2 + ‖∇u2‖2)∇u2) = 0

(5)

where

Iz = I (x + u) − I (x),
Ix1 = ∂x1 I (x + u),
Ix2 = ∂x2 I (x + u).

(6)

Note that Iz is not a temporal derivative but a difference
that is sought to be minimised. Since the energy func-
tional (4) is nonlinear and not even convex, the solution
of this equation system is quite a challenge. One way
to handle nonlinear equations is to derive a fixed point
scheme and to determine the solution iteratively. The
actual iteration scheme as well as the proper choice of
the initialisation are equally important.

3.1. Iteration Scheme

For the formulation of the iteration procedure we
choose a fully implicit scheme in the smoothness term

and a semi-implicit scheme in the data term. Both ap-
proaches are preferable to explicit schemes, since they
usually ensure faster convergence to the solution and
better stability. Let uk = (uk

1, uk
2, 1)� and let I k

∗ denote
abbreviations defined in (6) but with the iteration vari-
able uk instead of u, then uk+1 can be obtained as the
solution of

� ′((I 2
z

)k+1) · I k+1
z I k

x1

−α div
(
� ′(∥∥∇uk+1

1

∥∥2 + ∥∥∇uk+1
2

∥∥2)∇uk+1
1

) = 0

� ′((I 2
z

)k+1) · I k+1
z I k

x2

−α div
(
� ′(∥∥∇uk+1

1

∥∥2 + ∥∥∇uk+1
2

∥∥2)∇uk+1
2

) = 0

(7)

where � ′ denotes the derivative of � with respect to
its argument s2. This fixed point iteration is nonlinear
in u due to the structure of the components I (x+uk+1)
and � ′(·). Hence for further simplification towards lin-
ear equations, additional steps are necessary. First the
terms of the form I (x + uk+1) are linearised via Taylor
expansion

I k+1
z = I (x + uk+1) − I (x)

≈ I (x + uk) + I k
x1

duk
1 + I k

x2
duk

2 − I (x)

= I k
x1

duk
1 + I k

x2
duk

2 + I k
z ,

where we split the unknown iteration variable uk+1

into the known variable uk and an unknown update
duk = (duk

1, duk
2, 0)�. This leads to a system

(� ′)k
Data · ((

I k
x1

duk
1 + I k

x2
duk

2 + I k
z

)
I k

x1

)
− α div

(
(� ′)k

Smooth∇
(
uk

1 + duk
1

)) = 0

(� ′)k
Data · ((

I k
x1

duk
1 + I k

x2
uk

2 + I k
z

)
I k

x2

)
− α div

(
(� ′)k

Smooth∇
(
uk

2 + duk
2

)) = 0

(8)

with the abbreviations

(� ′)k
Data := � ′((I k

x1
duk

1 + I k
x2

duk
2 + I k

z

)2)
,

(� ′)k
Smooth := � ′(∥∥∇ (

uk
1 + duk

1

) ∥∥2

+∥∥∇ (
uk

2 + duk
2

) ∥∥2)
.

(9)

Thanks to this linearisation the system (8) can be con-
sidered as a system of fixed point equations in the
newly introduced variable duk. The flow uk is known
from the previous iteration step. Note that the system
of equations is still nonlinear with respect to duk, but
now this nonlinearity stems only from the terms of the
form � ′. We cope with this nonlinearity through an
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approach similar to the one above and we introduce a
second, inner, fixed point iteration that will allow to
determine the increment duk used in the outer itera-
tion. To this end, let duk,0 = 0 our initialisation and let
duk,l denote the iteration variables at step l. Further, let
(� ′)k,l

Data and (� ′)k,l
Smooth stand for the robustness factor

and the diffusivity defined in (9). Then duk,l+1 is the
solution of the linear system

(� ′)k,l
Data · ((

I k
x1

duk,l+1
1 + I k

x2
duk,l+1

2 + I k
z

)
I k

x1

)
− α div

((
� ′)k,l

Smooth∇
(
uk

1 + duk,l+1
1

)) = 0

(� ′)k,l
Data · ((

I k
x1

duk,l+1
1 + I k

x2
duk,l+1

2 + I k
z

)
I k

x2

)
− α div

((
� ′)k,l

Smooth∇
(
uk

2 + duk,l+1
2

)) = 0.

(10)

The fixed point of this system is employed to increment
the outer iteration. After computation of the new outer
iteration variable uk+1, we are able to obtain terms of
I (x+uk) via interpolation. Such a calculation has to be
performed only once just at the beginning of the inner
iteration loop.

One should note that since the utilised penaliser
function � is convex, the increment duk is the so-
lution of a convex optimisation problem. It is therefore
uniquely defined and can be obtained by the suggested
iteration procedure. Discretisation of the system (9)
with finite differences leads to a sparse linear system
that can be solved by common numerical methods such
as successive over-relaxation (SOR) (Young, 1971).

3.2. Initialisation

The energy E(u) to be minimised is nonlinear and non-
convex. Hence the solution obtained by the proposed
iteration scheme heavily depends on the initialisation.
In order to avoid getting trapped in local minima, we
suggest to employ a coarse-to-fine strategy.

For this purpose a complete image pyramid is gen-
erated where the image is successively downsampled
by an arbitrary but fixed constant η ∈ (0, 1) in ac-
cordance to Shannon’s sampling theorem. For usual
pyramids η = 0.5 is taken. Choosing larger η results
in smoother transitions between levels of the pyramid
and potentially leads to better results.

By the iteration scheme described above we are solv-
ing the minimisation problem successively on each
level of the pyramid starting on the coarsest possible
grid. There the scheme is initialised with the vanishing

flow u0 = 0. The solution of the outer iteration scheme
is prolongated at each step to the next finer level, where
it is employed for the initialisation of the outer fixed
point iteration working on this level. The underlying
assumption of such an approach is that on the coarsest
level the energy indeed has a unique minimum already
close to the global minimum of the original prob-
lem. The refinement at finer scales is then expected
to yield this global minimum. A theoretical investiga-
tion on this topic can be found in Lefébure and Cohen
(2001).

3.3. Extension to Higher Order Data Terms

The current minimisation scheme refers only to the
model based on the grey value constancy. It is now
shown that this scheme can also be extended to those
higher order data terms that can be written in the form
given in (1). For the sake of brevity and simplicity
only the relevant terms are presented in tabulated form,
since the essential idea of the minimisation scheme
is the same for each of these data terms. For better
comparison, we also display the terms belonging to
the grey value constancy assumption already treated
above.

Grey value constancy assumption:

Abbreviation:

Iz = I (x + u) − I (x)

Data term:

�
(
I 2

z

)

Euler Lagrange equation:

� ′(I 2
z

) · ∇ I (x + u) · Iz

Iteration scheme:

� ′((I k+1
z

)2) · ∇ I k · I k+1
z

Taylor expansion:

I k+1
z = I k

z + (∇ I k)� · duk

Gradient constancy assumption:

Abbreviation:

Ixi z = Ixi (x + u) − Ixi (x), i = 1, 2
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Data term:

�

(
2∑

i=1

I 2
xi z

)

Euler Lagrange equation:

� ′
(

2∑
i=1

I 2
xi z

)
· H2 I (x + u) · (Ix1z, Ix2z)

�

Iteration scheme:

� ′
(

2∑
i=1

(
I k+1

xi z

)) · H2 I k · (
I k+1

x1z , I k+1
x2z

)�

Taylor expansion:

I k+1
xi z = I k

xi z + (∇ I k
xi

)� · duk, i = 1, 2

Hessian constancy assumption:

Abbreviation:

Ixi x j z = Ixi x j (x + u) − Ixi x j (x), i, j = 1, 2

Data term:

�

(
2∑

i=1,2

I 2
xi x j z

)

Euler Lagrange equation:

� ′


 2∑

i=1, j

I 2
xi x j z


 ·

2∑
i, j=1

∇ Ixi x j (x + u) · Ixi x j z

Iteration scheme:

� ′


 2∑

i=1, j

(
I k+1

xi x j z

)2


 ·

2∑
i, j=1

∇ I k
xi x j

· I k+1
xi x j z

Taylor expansion:

I k+1
xi x j z = I k

xi x j z + (∇ I k
xi x j

)� · duk, i, j = 1, 2

Laplacian constancy assumption:

Abbreviation:

�Iz = �I (x + u) − �I (x)

Data term:

�((�Iz)
2)

Euler Lagrange equation:

� ′((�Iz)
2) · ∇�I (x + u) · �Iz

Iteration scheme:

� ′((�I k+1
z

)2) · ∇�I k · �I k+1
z

Taylor expansion:

�I k+1
z = �I k

z + (∇�I k)� · duk

4. Relation to Warping

In the previous section, a numerical scheme has been
presented that allows to minimise an energy functional
with non-linearised constancy assumptions. In this sec-
tion, it will be shown that our minimisation scheme can
serve as justification for so-called coarse-to-fine warp-
ing techniques, which have been quite successful in
optic flow computation, yet their motivation was so far
based only on algorithmic considerations.

In former approaches (Anandan, 1989; Black and
Anandan, 1996; Mémin and Pérez, 1998, 2002; Bruhn
et al., 2005) warping methods have been used to com-
pensate the disadvantage of linear data terms not being
capable to deal adequately with large displacements.
This has been achieved by the coarse-to-fine strategy.
Since the displacement u is already computed on a
coarse level where the displacements are still small, and
on the corresponding finer grid only the (also small) in-
crement du has to be obtained, the linearisation of the
constancy assumption is a good approximation of the
original assumption. By this methodology it became
possible to successfully handle large displacements for
the first time.

A second approach to deal with large displacements
is based on the usage of nonlinear data terms as this
has been proposed in Nagel and Enkelmann (1986)
and Alvarez et al. (2000) and in the present paper. This
approach offers the advantage to incorporate large dis-
placements directly in the optic flow model. A short-
coming of this model, on the other hand, is that the
corresponding nonlinear energy functional can have
multiple local minima. In Alvarez et al. (2000) this
problem has been addressed by a scale-space approach.
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Table 2. Impact of different constancy assumptions on the quality of the optic flow field. Results of the 2D variant for the Yosemite sequence
with clouds.

Yosemite with clouds

Constancy Term γ 1 γ 2 γ 3 γ 4 σ α AAE STD

Grey value D1 1 0 0 0 0.50 25 4.88◦ 7.60◦

Gradient D2 0 1 0 0 0.85 7 2.56◦ 7.07◦

Hessian D3 0 0 1 0 1.30 4 2.88◦ 6.55◦

Laplacian D4 0 0 0 1 1.60 4 2.75◦ 8.05◦

AAE = average angular error. STD = standard deviation.

In a similar way, we propose here a more efficient
downsampling strategy. Both techniques aim at an ini-
tialisation of the flow field at the finest scale that is as
close to the global minimum as possible.

The similarities in formulation and numerical re-
alisation suggest a yet unexplained common back-
ground of warping methods on one hand, and meth-
ods with non-linearised constancy assumptions on the
other hand. In fact we are able to demonstrate the equiv-
alence of both schemes from the numerical point of
view. If we restrict ourselves to spatial smoothness for
the sake of simplicity, (8) reads

(� ′)k
Data · I k+1

z I k
x

−α div
(
(� ′)k

Smooth∇
(
uk

1 + duk
1

)) = 0

(� ′)k
Data · I k+1

z I k
y

−α div
(
(� ′)k

Smooth∇
(
uk

2 + duk
2

)) = 0.

For fixed k this system is identical with the Euler-
Lagrange equations in Mémin and Pérez (2002). Just
as in our approach, only the increment du of the flow is
calculated. Thus it is shown that the warping technique
actually minimises an energy functional which is based
on non-linearised constancy assumptions, whereas the
minimisation relies on a coarse-to-fine strategy com-
bined with two nested fixed point iterations.

5. Experiments

For evaluation purposes experiments with both syn-
thetic and real-world image data were performed. The
presented angular errors were computed via

arccos

(
(u1)c(u1)e + (u2)c(u2)e + 1√

((u1)2
c + (u2)2

c + 1)((u1)2
e + (u2)2

e + 1)

)

(11)

where the subscripts c and e denote the correct resp. the
estimated flow (cf. Barron et al., 1994). As proposed
in Barron et al. (1994) we preprocessed each image
sequence by convolution with a Gaussian kernel before
computation. In the following experiments the standard
deviation of this Gaussian is referred to as parameter
σ .

5.1. Synthetic Image Data

We start our experimental evaluation with a compar-
ison of the four constancy assumptions D1 – D4 re-
garding their impact on the quality of the computed
flow field. To this end, we consider the 2D variant of
our algorithm with only one constancy assumption en-
abled at a time. This can be accomplished by setting the
corresponding weights γ i of the remaining constancy
assumptions to zero. The famous Yosemite sequence
with clouds created by Lynn Quam serves as test scene.
This synthetic sequence combines divergent and trans-
lational motion under varying illumination and may be
obtained from ftp://csd.uwo.ca under the direc-
tory /pub/vision.

In Fig. 1 the computed flow fields for all four dif-
ferent constancy assumptions are displayed. Moreover,
the ground truth flow field is presented to allow for a vi-
sual comparison of the results. While the divergent mo-
tion of the flight is estimated accurately independently
of the underlying constancy model, one can clearly
observe a superior performance of the higher order
data terms in those areas where illumination changes
are present: the sky region. In this region the algo-
rithm based on the grey value constancy assumption
obviously fails to produce meaningful results. This
behaviour is fully in accordance with our theoretical
considerations from Section 2. A further confirmation
of this observation is given by the results in Table 2.
The listed average angular errors clearly indicate a sig-
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Figure 1. (a) Top left: Frame 8 of the Yosemite sequence with clouds. (b) Top right: Ground truth with clouds. (c) Middle left: Computed flow
field by our 2D method with constancy assumption D1 (Grey value). (d) Middle right: Ditto with D2 (Gradient). (e) Bottom left: Ditto with D3

(Hessian). (f) Bottom right: Ditto with D4 (Laplacian).

nificant better performance for those data terms that
involve higher order derivatives.

After showing the good performance of different
higher order constancy assumptions under varying il-
lumination, we simplify our model before continuing

with the remaining experiments. Obviously, it is de-
sirable to combine at least one higher order constancy
assumption with the classical grey value constancy. For
this reason we select the gradient constancy assump-
tion to represent the class of higher order assumptions
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Figure 2. (a) Top left: Frame 8 of the Yosemite sequence without clouds. (b) Top right: Corresponding frame of the sequence with clouds. (c)
Middle left: Ground truth without clouds. (d) Middle right: Ground truth with clouds. (e) Bottom left: Computed flow field by our 3D method
for the sequence without clouds. (f) Bottom right: Ditto for the sequence with clouds.

in our energy functional and set γ 3 = 0 and γ 4 = 0. In
order to reduce the number of parameters in the data
term further, we set γ 1 = 1 fixed.

In our second experiment we compare the
obtained results for the Yosemite sequence with
clouds and its variant without clouds (http://

www.cs.brown.edu/people/black/images.html)
to the best results from the literature reported so far.
This is done in Table 3. As one can see, our variational
approach outperforms all other methods. Regarding
the sequence with clouds, to the best of our knowledge,
we achieve results that are more than twice as accurate
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Table 3. Comparison between results from the literature with 100% density and our results for the Yosemite sequence with and without cloudy
sky.

Yosemite with clouds Yosemite without clouds

Technique AAE STD Technique AAE STD

Horn/Schunck, orig. (Barron et al. 1994) 31.69◦ 31.18◦ Black (1994) 3.52◦ 3.25◦

Singh, step 1 (Barron et al. 1994) 15.28◦ 19.61◦ Szeliski and Coughlan (1994) 2.45◦ 3.05◦

Anandan (Barron et al. 1994) 13.36◦ 15.64◦ Black–Jepson (1996) 2.29◦ 2.25◦

Singh, step 2 (Barron et al. 1994) 10.44◦ 13.94◦ Ju et al. (1996) 2.16◦ 2.00◦

Nagel (Barron et al. 1994) 10.22◦ 16.51◦ Bab-Hadiashar–Suter (1998) 2.05◦ 2.92◦

Horn–Schunck, mod. (Barron et al. 1994) 9.78◦ 16.19◦ Lai–Vemuri (1998) 1.99◦ 1.41◦

Uras et al. (Barron et al. 1994) 8.94◦ 15.61◦ Our method (2D) 1.64◦ 1.43◦

Alvarez et al. (2000) 5.53◦ 7.40◦ Mémin–Pérez (2002) 1.58◦ 1.21◦

Mémin–Pérez (1998) 4.69◦ 6.89◦ Farnebäck (2000) 1.40◦ 2.57◦

Bruhn et al. (2005) 4.17◦ 7.72◦ Farnebäck (2001) 1.14◦ 2.14◦

Our method (2D) 2.44◦ 6.90◦ Bruhn et al. (2005) 1.02◦ 1.12◦

Our method (3D) 1.78◦ 7.00◦ Our method (3D) 0.98◦ 1.17◦

AAE = average angular error. STD = standard deviation. 2D = spatial smoothness assumption. 3D = spatio-temporal smoothness assumption.

Table 4. Impact of the different model assumptions on the quality of the flow field for the Yosemite sequence with clouds.

Yosemite with clouds

Technique DT-NQ ST-NQ 3D GRAD DT-NL AAE STD

Classic Horn-Schunck – – – – – 7.17◦ 9.09◦

NQ smoothness term –
√

– – – 6.36◦ 8.34◦

NQ data and smoothness term
√ √

– – – 5.97◦ 7.79◦

NQ smoothness term 3D –
√ √

– – 5.66◦ 7.96◦

NQ data and smoothness term 3D
√ √ √

– – 5.37◦ 7.81◦

Gradient constancy
√ √

–
√

– 3.50◦ 7.84◦

Gradient constancy 3D
√ √ √ √

– 2.76◦ 7.58◦

Non-linearised constancy
√ √

–
√ √

2.44◦ 6.90◦

Non-linearised constancy 3D
√ √ √ √ √

1.78◦ 7.00◦

DT-NQ = Non-quadratic data term. ST-NQ = Non-quadratic smoothness term. 3D = spatio-temporal smoothness assumption. GRAD =
Additional gradient constancy assumption. DT-NL = Non-linearised constancy assumption. AAE = average angular error. STD = standard
deviation.

as all results from the literature. For the sequence
without clouds, angular errors below one degree are
reached for the first time with a method that offers
full density. The corresponding flow fields presented
in Fig. 2 give a qualitative impression of these raw
numbers: they match the ground truth very well.
Not only the discontinuity between the two types of
motion is preserved, also the translational motion of
the clouds is estimated accurately. The reason for this
behaviour lies in the assumptions clearly stated in the
energy functional: while the choice of the smoothness

term allows discontinuities, the gradient constancy
assumption is able to handle brightness changes —
like in the area of the clouds.

In our third experiment we study how the individual
model assumptions influence the quality of the com-
puted flow field. Table 4 shows that, starting from the
classical approach of Horn and Schunck, each exten-
sion of the optic flow model implies a significant im-
provement in the average angular error. In a first step
the introduction of a non-quadratic smoothness term
allows the model to capture the motion discontinuities
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Table 5. Results for our method with spatio-temporal smoothness assumption using the Yosemite sequence with and without cloudy sky.
Gaussian noise with varying standard deviations σ n was added, and the average angular errors and their standard deviations were computed.

Yosemite with clouds Yosemite without clouds

σ n AAE STD σ n AAE STD

0 1.78◦ 7.00◦ 0 1.98◦ 1.15◦

10 2.49◦ 6.56◦ 10 1.27◦ 1.26◦

20 3.21◦ 6.46◦ 20 1.65◦ 1.40◦

30 3.87◦ 6.60◦ 30 2.09◦ 1.59◦

40 4.49◦ 6.87◦ 40 2.44◦ 1.78◦

AAE = average angular error. STD = standard deviation.

more accurately. The extension of this model to the
spatio-temporal domain leads to further improvements
due to the availability of more data. Applying a non-
quadratic function also to the data term addresses prob-
lems at the boundaries of the image sequence, where
occlusions occur and therefore outliers in the data com-
promise the correct estimation of the flow field. Further
augmentation by the gradient constancy assumption
allows for the correct estimation of the motion even
in the sky region, where local brightness changes are
present. Finally, the usage of the non-linearised con-
stancy assumptions enhances the accuracy of the re-
sults in general and in particular in the areas with large
displacements.

Since we are using constancy assumptions that
are based on higher order derivatives the question
on the performance under noise arises. This ques-
tion shall be answered in our fourth experiment. We
added Gaussian noise of zero mean and different
standard deviations to the Yosemite sequence with
and without clouds prior to computing the flow field
with our 3D method. The obtained results are pre-
sented in Table 5. They show that our approach even
yields excellent flow estimates when severe noise is
present.

In our fifth experiment we investigate the robust-
ness of the free parameters in our approach: the weight
γ 2 between the grey value and the gradient constancy
assumption, the regularisation parameter α that steers
the smoothness of the resulting flow field and σ , the
standard deviation of the Gaussian kernel used for pre-
smoothing. To this end, we computed results with pa-
rameter settings that deviate by a factor 2 in both di-
rections from the optimum setting. The outcome listed
in Table 6 shows that the method is also very robust
under parameter variations.

Table 6. Parameter variation for our method with spatio-temporal
smoothness assumption. Yosemite with clouds.

γ 2 σ α AAE STD

100 1.0 60 1.78◦ 7.00◦

50 1.0 60 1.82◦ 6.89◦

200 1.0 60 1.90◦ 7.23◦

100 1.0 30 2.57◦ 8.40◦

100 1.0 120 2.09◦ 7.48◦

100 0.5 60 2.21◦ 7.10◦

100 2.0 60 2.23◦ 6.85◦

AAE = average angular error. STD = standard deviation.

Although our paper does not focus on fast com-
putation but on high accuracy, the implicit minimi-
sation scheme presented here is also reasonably fast,
especially if the reduction factor η is lowered or if
the iterations are stopped before full convergence. The
convergence behaviour and computation times for the
Yosemite sequence with cloudy sky can be found in
Table 7, both for the spatial and the spatio-temporal
version. Computations have been performed on a 3.06
GHz Intel Pentium 4 processor executing C/C++
code.

As one may wonder whether it is always reason-
able to assume spatio-temporal smoothness, Table 8
reveals the improvement in the AAE when using
spatio-temporal smoothness. For this comparison we
tested our method with two further publicly avail-
able sequences, the cropped Street sequence (available
at www.cs.otago.ac.nz/research/vision ) and
the Marble sequence (available at http://i21www.
ira.uka.de/image sequences). Obviously, the
spatio-temporal smoothness assumption has in gen-
eral a quite positive impact. Temporal blurring
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Table 7. Computation times and convergence for Yosemite sequence with clouds.

Reduction factor η Outer fixed point iter. Inner fixed point iter. SOR iter. Computation time AAE

2D - spatial method

0.95 77 10 5 14s 2.44◦

0.90 38 2 5 1.9s 2.46◦

0.85 25 2 5 1.2s 2.63◦

0.80 18 2 5 0.93s 2.83◦

0.75 14 2 5 0.78s 3.09◦

0.70 12 2 5 0.66s 3.38◦

0.65 10 2 5 0.58s 3.82◦

0.60 8 2 3 0.45s 4.78◦

Reduction factor η Outer fixed point iter. Inner fixed point iter. SOR iter. Computation time/frame AAE

3D - spatio-temporal method

0.95 77 10 5 19s 1.78◦

0.95 77 2 5 4.5s 1.82◦

0.90 38 2 5 2.3s 1.98◦

0.85 25 2 5 1.6s 2.13◦

0.80 18 2 5 1.2s 2.49◦

0.75 14 2 5 1.0s 3.20◦

artifacts are largely avoided by the discontinuity pre-
serving model which only demands piecewise smooth-
ness. This conjecture is further confirmed by the ex-
periments in Bruhn et al. (2005).

5.2. Real-World Image Data

Finally we evaluate the performance of our method
on real-world image data. To this end, we con-
sider the Karl Wilhelm Street traffic sequence
created by Nagel. Together with other challeng-
ing traffic scenes it is available from http://
i21www.ira.uka.de/image sequences/. It shows
a surveillance video of an intersection and consists of
1033 frames of size 702 × 566. One should note that
this sequence has been recorded in interlaced mode
and thus requires the handling of typical interlacing
artifacts.

Figure 6 depicts the computed flow field between
frame 860 and 861 as well as the corresponding mag-
nitude plot. Evidently, our estimation gives very re-
alistic results: the individual motion of cars, cyclists
and pedestrians is well-captured by the proposed ap-
proach. Moreover, the motion of partially covered ob-
jects, such as the car that approaches the intersection
from the right, are estimated precisely, as well. In this
context we would like to emphasise that not all objects

Table 8. Comparison between our method with spatial (2D) and
spatio-temporal (3D) smoothness.

Sequence AAE 2D AAE 3D

Yosemite with clouds 2.44◦ 1.78◦

Yosemite without clouds 1.64◦ 0.98◦

Street 4.93◦ 4.54◦

Marble 4.74◦ 1.91◦

AAE = average angular error.

are moving. For instance, the white van in the upper
right and the pedestrians at the left crossing are station-
ary. As a consequence, the estimation of zero flow, as
computed by our algorithm, is absolutely correct. Al-
though the sequence suffers from the aforementioned
interlacing artifacts, the flow boundaries are relatively
sharp. Once more, this is a direct consequence of us-
ing non-quadratic functions such as the proposed total
variation. From such a sharp and precise estimation
it is just a small step towards a segmentation of all
moving objects. Due to the accuracy of the computed
flow field, the application of a rather simple segmen-
tation technique such as tresholding would already be
sufficient to achieve a very appealing result.

In our second experiment concerning real-world
data we use the Rheinhafen traffic sequence that was
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Figure 3. (a) Left: Frame 8 of the Yosemite sequence with clouds degraded by Gaussian noise of σn = 40. (b) Right: Computed flow field by
our 3D method.

Figure 4. (a) Left: Frame 10 of a cropped version of the Street sequence (b) Right: Computed flow field by our 3D method.

Figure 5. (a) Left: Frame 15 of the Marble sequence (b) Right: Computed flow field by our 3D method.

created by Nagel as well. It consists of 1000 frames of
size 688 × 565 and is available for public download at
the same internet address as the previously mentioned
Karl Wilhelm Street scene. Again interlacing artifacts

are present in all frames. Figure 7 shows both the com-
puted flow field between frame 1130 and 1131 and its
magnitude plot (the sequence starts with frame 1000).
As before the estimated flow field is very precise. Even
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Figure 6. (a) Left: Computed flow field between frame 860 and 861 of the Karl Wilhelm Street traffic sequence. (b) Right: Computed magnitude
of the optical flow field.

Figure 7. (a) Left: Computed flow field between frame 860 and 861 of the Karl Wilhelm Street traffic sequence. (b) Right: Computed magnitude
of the optical flow field.

geometric phenomena such as perspective distortion
are respected in the magnitude plot. This is indicated
by the decreasing displacements of the bright van in the
image foreground. The boundaries are again very sharp
and would allow for a straightforward segmentation.

6. Conclusion

In this work, we have introduced a continuous, ro-
tationally invariant model for optic flow computa-
tion based on nonlinear constancy assumptions. Be-
sides the common grey value constancy assumption,
analogues based on spatial derivatives, such as con-
stancy of the gradient, Hessian, and Laplacian, have
been incorporated into our formulation. Furthermore,

these constancy assumptions are not linearised as it
is done in most other optic flow estimation methods.
Additionally, the model contains a spatio-temporal TV
regulariser in order to allow for discontinuities in the
calculated flow field, and applies a robust function also
to the data term. The variational framework offers a
good opportunity of combining all these various con-
cepts within a single energy functional.

The paper has also introduced a sound minimisa-
tion scheme for this energy functional. Starting with
the nonlinear model, which does not impose any re-
strictions on the flow field in sharp contrast to linear
approaches, the nonlinearity is resolved by two nested
fixed point iterations. A coarse-to-fine strategy thereby
avoids local minima appearing in this non-convex op-
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timisation problem. An additional outcome of this pa-
per, which emerges from the numerical scheme, is the
explanation of the widely-used warping technique as
a numerical approximation of the continuous energy
functional with non-linearised constancy assumptions.
This elucidates the success the warping technique is
known for. We have further indicated that this impor-
tant concept of postponing linearisations to the nu-
merical scheme can also be transferred to constancy
assumptions of higher order. It has been shown that the
combination of various successful concepts in a sin-
gle model and an elaborated numerical scheme for its
optimisation is rewarded by excellent results and high
robustness with respect to noise or parameter varia-
tions.
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