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ABSTRACT

An algorithm is presented that estimates veloci-
ties of objects from second order spatial and
spatio—temporal derivatives. Images are first
smoothed to increase the signal-to-noise ratio
and to assure continuity of the intensity func-—
tion. Experimental results show that the algor-—
ithm provides good estimates even when the con-—
ditions are not ideal: rotation and nonuniform
background are tolerated when present in small
amounts,

1_INTRODUCTION

Methods for motion estimation can be clas—
sified as matching algorithms that deduce motion
by comparing locations of features on succesive
frames, and local algorithms that estimate velo-
cities from spatial and temporal variations of
intensity. A number of these non-matching proce—
dures are ba%fd on the so—called 'optical flow
constraint'l’

I, = - LV, - LV (1)

Yy

Where I(x,y,t) is the image intensity as a func—
tion of two spatial coordinates and time, Ix’ Iy
It are partial derivatives, and Vx. Vv are
velocity components. Partial derivatives can be
approximated by differences., This equation only
provides a constraint between the two components
of velocity, and another relation is necessary to
obtain unambiguous v%}ues of the velocity vector.
Some investigatorss' computed only one velo-—
city component., Other studies used a clustering
approach™’” (a modified Hough transform) to both
estimate velocity and to segment the image into
static 6and moving areas, Powerful algo—
rithmsz' can be developed if one assumes that
velocity varies smoothly over the image. Nagel
uses quadratic approximations of the intensity
function, and matches these over succesive ima—
ges. The matching idea® was also applied to
directional derivatives of the luminance over
regions in the image. Another family of ’'incre-
mental’ algorithms is based on Kalman filter

theory9’10'11.
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2 THEORETICAL BASIS

Let L(u,v) be a function with continuous

second derivatives, and assume that
I(x,y,t) = L(x—th,y—Vyt). (2)

More complex situations, such as acceleration or
rotary motion can be handled by using appropri-
ate functions u(x,y,t) and v(x,y,t). In our
case,

I - LV

t = u'x ~ vay' (3)

Differentiating this with respect to x and y, and
noting that the partial derivateves Ix, I, Ixx’
etc, respec¥ive1y,

etc are equal to Lu’ Lv’ Luu’
we get
Ly = - LYy - LoV (4.1)
= - - . .2)
Iyt Ixny Inyy (4

This is a system of two equations in the two
unknowns Vx, V_ and can be solved at each point
where the hessian matrix

lr 1|
g= | 7] (5)
Xy Ty |
is nonsingular, Whenever this
velocity can be computed from

is the case, the

{1, |

— t

| %1 = g1 *| (6)
b, |

Note that the determinant of the hessian is the
gaussian curvature of the 'surface' I(x,y,t) at
fixed t. It is equal to the product of the two
principal curvatures at a point, giving an idea
of 'distinctiveness’ of a given point. It pro-
vides important information, since the points
that have large gaussian curvature are those that
have large contrast in all directions, and are
good candidates for velocity estimation.

3_ALGORITHM
Practical implementation of an algorithm

that uses equation (6) for velocity estimation
has to take two points into consideration:



1. Equation (6) was derived assuming that the

image and its partial derivatives were con—
tinuous. Real images are discontinuous in
regions of sharp contrast, like object boun-
daries, shadows, etc. This is specially true
for synthetic images, where no blurring is
introduced by the scanner. Smoothing the
image with a low-pass filter insures the
continuity of the intensity function, and also
increases the signal to noise ratio,

In a digital computer the image is stored as
an array of points, rather than a function of
continuous variables. Therefore partial
derivatives have to be approximated by
differences.

The algorithm developed by us can be de-

composed into the following steps:

1,

Image Smoothing. Smoothing was performed with
succesive sliding averages. In each smoothing
stage every point in the image was replaced by
the average of the intensity function over the
points inside a square centered on the point,
Different smoothing impulse response shapes
were obtained by performing the smoothing
stage different numbers of times: after two
stages, the impulse response has a pyramidal
shape, after three, a paraboloidal bell shape,
etc. In our experiments, images were digiized
to eight bits, but it was necessary to retain
fractional pixel brightness values in the
smoothing process.

The filter described above performs spa-
tial smoothing, It is also possible to per—
form temporal smoothing by averaging consecu-—
tive frames within a sequence., The main ad-
vantage of time averaging is that the width of
the resulting spread depends on the velocity
of the mooving object, and permits better
estimates for large speeds, Its main dis-
advantage are greater computational and
storage requirements. No temporal smoothing
was performed in our experiments,

Partial Derivative Calculation. Partial deri-
vatives were approximated with the following
central differences:

L (x,y,t) = [I(x+2,y,t) - 2I(x,y,t) +
I(x-2,y,t)1/4 (6)

Ixy(x.y,t) = [I(x+1,y+1,t) - I(x-1,y+1,t) -
I(x+1,y-1,t) + I(x-1,y-1,t)1/4 (7

Ii(x,y,t) = [I(x+l,y,t+1) - I{x+l,y,t-1) -
I(x_l,y,t"'l) + I(x"l,y;t_l)]/4 (8)

The expressions for I and Iyt are similar,

yy

It is possible to analyze the error in-
troduced by these approximations by expanding
the image function in a Taylor series arount
the point (x,y,t). The error terms depend on
intensity gunction derivatives of order four
or higher1 .

We found that the the difference formulas
had a substantial effect on the accuracy of
the velocity estimates, and best results were
obtained with the above formulas.

3. Velocity Estimate Calculation, Once the
second derivatives of the intemsity function
have been found, equation (6) gives an
estimate of the interframe displacement
(whenever the gaussian curvature is not equal
to zero).

4, Velocity Estimate Smoothing. The accuracy of
the eostimates obtained in step 3 depends on
many factors, such as noise, local properties
of the image, the actual speed, etc. Avera-
ging estimates over small neighborhoods is a
simple way to reduce errors., Points with
small values of gaussian curvature were ex—
cluded from the averages. It can be shown
that the determinant of H computed from the
given second differences is an unbiased
estimate of gaussian cufgature if the noise is
white and of zero mean'“. However, since the
determinant appears in the denominator of
equation (6), noise will have a larger effect
if the gaussian curvature is small,

4_RESULTS

Motion was simulated in two ways: by per-—
forming translations of a single image with
computer programs (synthetic motion), or by
digitizing sequences of objects mooved manually
(real motion)., Most of the results that we will
report were obtained in the vicinity of a corner
of a rectangular object mooving over uniform and
nonuniform backgrounds. The results obtained
with synthetic and real motion trials show that
the accuracy of the velocity estimate depends on
several factors:

1. External factors:

1.1 Magnitude of the interframe displacements:
smaller displacements can be measured more
accurately.

1.2 Non-ideal conditions, such as rotary mo-
tion, nonuniform background, acceleration,
noise, etc.

2, Internal factors:

2.1 Filter parameters, In general, the wider
the filter impulse response, the smaller
the errors, This is especially true for
large speeds.

2,2 The gaussian curvature at a point.
Usually, the best estimates are obtained
at points with large gaussian curvature,
as discussed in section 3. Reference [12]
contains more details on this matter.

Figures 1 and 2 illustrate some examples of
the the dependence of the average speed error and
velocity standard deviation on the width of the



filter impulse response and on the threshold
value of gaussian curvaure. It can be seen that
if the filter impulse response width is large
enough, when the threshold is set to reject
points with low gaussian curvature, the algorithm
produces accurate velocity estimates,

5 CONCLUSIONS AND DISCUSSION

The algorithm presented provides a simple
and reliable method for velocity estimation when
the interframe displacement is small, Our algo-
rithm seems to be best suited for estimating
small velocities, ones that lead to interframe

displacements of only a few pixels., Note that
the algorithms are capable of measuring
velocities that correspond to interframe

displacements amounting to fractions of pixels.

This algorithm is a member of a family of
techniques that are based on both first and
second partial derivatives of images. Note that
the information about the velocity contained in
equation (1) is independent of that in equations
(4). By combining these we obtain three equat-—
ions in two unknowns (the velocity components)
and the velocity may be found by computing the
pseudoinverse., A more geometrically intuitive
approach is to evaluate the directional deriva-—
tive of the temporal rate of change of image
intensity (1) in the direction of the gradient or
at right angles to it. This leads to

(I 1

+ LI IV + (LI +IT1I )V

y:

X xx y xy’'x XXy y'yy
i 9 S Inyt (9)
and
(Inyx - IxIxy)Vx - (IyIxy - Inyy)V =
- Inyt + Inyt (10)
respectively. Either (9) or (10) may be combined
with (1) to produce two equations for the

velocity components. Note that the determinants
of these groups of equations are different than
that of (4) so that they may lead to wvalid
velocity estimates even for points where the
gaussian curvature is equal to zero. In general,
the techniques we have described 1lead to a
redundant system of equations and the redundancy
may be exploited to design more flexible and/or
robust algorithms for velocity estimation.

The algorithm may be applicable to the
measurement of object displacement between
similar images, such as stereo pairs.

Further research is required to explore the
application of these notions to the estimation of
large speeds, image segmentation, and scene
analysis,
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Dependence of error on filter impulse
response width., Gaussian curvature
threshold is 107 of maximum gaussian
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Dependence of error on gaussian curva-
ture threshold. Three stages of 3x3
pexel smoothing were used (filter im-
pulse response width is 7 pixels).
Synthetic motion, velocity (1,1) and
(1,-1) piexles, e_ - average speed
error, og -~ velocity standard devi-
ation.
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