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ABSTRACT 

An algorithm is presented that estimates veloci­
ties of abjects from second order spatial and 
spatio-temporal derivatives. Images are first 
smoothed to increase the signal-to-noise ratio 
and to assure continuity of the intensity func­
tion. Experimental results show that the algor­
i thm provides good estimates even when the con­
ditions are not ideal: rotation and nonuniform 
background are tolerated when present in small 
amounts. 

1 INTRODUCTION 

Methods for motion estimation can be clas­
sified as matching algorithms that deduce motion 
by comparing locations of features on succesive 
frames, and local algorithms that estimate velo­
cities from spatial and temporal variations of 
intensity. A number of these non-matching proce­
dures are ba~ted on the so-called 'optical flow 
constraint• 1 •2 

(1) 

Where l(x,y,t) is the image intensity as a func­
t ion of two spatial coordina tes and t ime, 1 , 1 
It are partial derivatives, and V , V x ar~ 
velocity components. Partial derivatives ~an be 
approximated by differences. This equation only 
provides a constraint between the two components 
of velocity, and another relation is necessary to 
obtain unambiguous values of the velocity vector. 
Some investigators3 •4 computed only one velo­
city coi!Jf.~nent. Other studies used a clustering 
approach ' (a modified Hough transform) to both 
estimate velocity and to segment the image into 
static /nd moving areas. Powerful algo­
rithms2• can be developed if one assumes that 
velocity varies smoothly over the image. Nage17 
uses quadratic approximations of the intensity 
function, and matches these over succesive ima­
ges. The matching idea8 was also applied to 
directional derivatives of the luminance over 
regions in the image. Another family of 'incre­
menta!' algorithms is based on Kalman filter 

theory9,10,11. 
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2 THEORETICAL BASIS 

Let L(u,v) be a function with continuous 
second derivatives, and assume that 

More complex situations, such as acceleration or 
rotary motion can be handled by using appropri­
ate funct ions u(x, y, t) and v(x, y, t). In our 
case, 

It = - LUVX - LVVY. (3) 

Differentiating this with respect to x and y, and 
noting that the partial derivateves Ix, IY, lxx' 
etc are equal to Lu, Lv' Luu' etc, respectively, 
we get 

- Ixxvx - Ixyvy (4 .1) 

- IxyVx - IYYVY. (4.2) 

This is a system of two equations in the two 
unknowns Vx, Vy and can be solved at each point 
where the hessian matrix 

H 
1xx 1xy 

Ixy Iyy 

(5) 

is nonsingular. Whenever this is the case, the 
velocity can be computed from 

(6) 

Note that the determinant of the hessian is the 
gaussian curvature of the 'surface' l(x,y,t) at 
fixed t. It is equal to the product of the two 
principal curvatures at a point, giving an idea 
of 'distinctiveness' of a given point. It pro­
vides important information, since the points 
that have large gaussian curvature are those that 
have large contrast in all directions, and are 
good candidates for velocity estimation. 

3 ALGORITHM 

Practical implementation of an algorithm 
that uses equation (6) for velocity estimation 
has to take two points into consideration: 



1, Equation (6) was dorived assuming that the 
imago and its partial derivatives wore con­
tinuons. Real imagos are discontinuons in 
regions of sharp contrast, liko object bonn­
darios, shadows, ote. This is specially true 
for synthotic images, where no blurring is 
introducod by tho scanner. Smoothing tho 
image with a low-pass filtor insuros the 
continuity of tho intonsity function, and also 
incroases tho signal to noise ratio, 

2. In a digital 
an array of 
continuons 
derivatives 
differences, 

computer tho image is storod as 
points, rather than a function of 
variables. Thorofore partial 

have to be approximated by 

The algorithm devoloped by us can be de­
composod into tho following stops: 

1. Image Smoothing. Smoothing was porformod with 
succosivo sliding averages. In oach smoothing 
stage overy point in the imago was roplaced by 
the average of the intonsity function over the 
points insido a square contorod on tho point, 
Different smoothing impulse rosponso shapes 
wero obtained by porforming the smoothing 
stage different numbers of times: a ft er two 
stages, tho impulse rosponse has a pyramidal 
shape, after throo, a paraboloidal bell shape, 
ote. In our experimenta, imagos wero digiizod 
to oight bits, but it was nocessary to retain 
fractional pixel brightness values in tho 
smoothing procoss. 

The fil ter describod abovo performs spa­
tial smoothing, lt is also possible to por­
form temporal smoothing by averaging consecu­
tive frames within a sequence, The main ad­
vantago of timo averaging is that tho width of 
tho resulting sproad depends on the velocity 
of the mooving objoct, and pormits botter 
ostimatos for largo speeds, Its main dis­
advantago are groator computational and 
storago roquiremonts. No temporal smoothing 
was porformed in our oxporimonts. 

2. Partial Derivative Calculation. Partial deri­
vatives woro approximated with the following 
central differences: 

Ixx<x.y,t) = [I(x+2,y,t) - 2I(x,y,t) + 
I(x-2,y,t)]/4 (6) 

Ixy(x,y,t) = [I(x+1,y+1,t) - I(x-1,y+1,t) -
I(x+1,y-1,t) + I(x-1,y-1,t)]/4 (7) 

Ixt(x,y,t) = [I(x+1,y,t+1) - I(x+1,y,t-1) -
I(x-1,y,t+l) + I(x-1,y,t-l)]/4 (8) 

The expressions for Iyy and Iyt are similar, 

It is possible to analyzo tho orror in­
troducod by those approximations by oxpanding 
tho imago function in a Taylor series arount 
tho point (x,y. t). Tho orror terms depend on 
intensity function derivatives of ordor four 
or highor12 • 
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Wo found that tho tho difference formulas 
had a substantial offoct on tho accuracy of 
tho volocity ostimates, and best results wore 
obtainod with tho abovo formulas, 

3. Volocity Estimato Calculation, Once tho 
second derivatives of tho intonsity function 
have beon found, equation (6) givos an 
ostimato of tho intorframe displacomont 
(whonevor tho gaussian curvaturo is not oqual 
to zero). 

4. Ve loc ity Estima te Smoothing. Tho ac curac y of 
the ostimates obtainod in stop 3 depends on 
many factors, such as noise, local proportios 
of tho imago, tho actual spood, ote. Avera­
ging estimatos over small noighborhoods is a 
simple way to roduce errors, Points with 
small values of gaussian curvaturo wero ox­
cludod from tho averagos. It can be shown 
that tho determinant of H computed from tho 
givon second differences is an unbiased 
estimato of gaussian cur!aturo if tho noise is 
white and of zero mean • Howover, sinco tho 
determinant appoars in tho denominator of 
equation (6), noise will have a largor effect 
if the gaussian curvature is small. 

4 RESULTS 

Motion was simulatod in two ways: by por­
forming translations of a single imago with 
computer programs ( synthot'ic motion). or by 
digitizing sequences of objocts mooved manually 
(real motion). Most of the rosults that we will 
report were obtainod in the vicinity of a corner 
of a roctangular object mooving over uniform and 
nonuniform backgrounds. Tho rosults obtainod 
with synthotic and real motion trials show that 
tho accuracy of tho volocity ostimate depends on 
sevoral factors: 

1. External factors: 

1,1 Magnitude of the interframo displacemonts: 
smaller displacomonts can be moasurod moro 
accurately. 

1.2 Non-ideal conditions. such as rotary mo­
tion, nonuniform background, acceleration, 
noise, ote. 

2. Internai factors: 

2.1 Fil tor paramoters. In general, the widor 
tho filtor impulse rosponso, tho smaller 
tho orrors, This is ospocially true for 
largo spoods, 

2.2 The gaussian curvaturo at a point. 
Usually, tho bost ostimatos are obtainod 
at points with largo gaussian curvature, 
as discussed in section 3. Reference [12] 
contains moro details on this matter. 

Figures 1 and 2 illustrato somo oxamples of 
tho tho depondonco of tho average spood orror and 
velocity standard deviation on tho width of tho 



filter impulse response and on the threshold 
value of gaussian curvaure. It can be se en that 
if the filter impulse response width is large 
enough, when the threshold is set to reject 
points with low gaussian curvature, the algorithm 
produces accurate velocity estimates. 

S CONCLUSIONS AND DISCUSSION 

The algorithm presented provides a simple 
and reliable method for velocity estimation when 
the interframe displacement is small. Our algo­
rithm seems to be best suited for estimating 
small velocities, ones that lead to interframe 
displacements of only a few pixels. Note that 
the algorithms are capable of measuring 
velocities that correspond to interframe 
displacements amounting to fractions of pixels. 

This algorithm is a member of a family of 
techniques that are based on both first and 
second partial derivatives of images. Note that 
the information about the velocity contained in 
equation (1) is independent of that in equations 
(4). By combining the se we ob tain three equat­
ions in two unknowns (the ve loci ty component s) 
and the velocity may be found by computing the 
pseudoinverse. A more geometrically intuitive 
approach is to evaluate the directional deriva­
tive of the temporal rate of change of image 
intensity (1) in the direction of the gradient or 
at right angles to it. This leads to 

(lxlxx + Iylxy>Vx + (lxlxy + Iylyy)Vy 

and 
- Ixlxt - Iylyt (9) 

(lylxx - lxlxy>Vx - (lylxy - Ixlyy)Vy = 
- lylxt + Ixlyt (10) 

respectively. Either (9) or (10) may be combined 
with (1) to produce two equations for the 
velocity components. Note that the determinants 
of these groups of equations are different than 
that of (4) so that they may lead to valid 
velocity estimates even for points where the 
gaussian curvature is equal to zero. In general, 
the techniques we have described lead to a 
redundant system of equations and the redundancy 
may be exploited to design more flexible and/or 
robust algorithms for velocity estimation. 

The algorithm may be applicable to the 
measurement of object displacement between 
similar images, such as stereo pairs. 

Further re se arch i s required to explore the 
application of these notions to the estimation of 
large speeds, image segmentation, and scene 
analysis. 
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response width. Gaussian curvature 
threshold is 10% of maximum gaussian 
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speed error, crs - velocity standard 
deviation, Real motion, velocity (-1,0), 
er - average speed error, 
cr - speed standard deviation. 
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Figure 2. Dependence of error on gaussian curva­
ture threshold. Three stages of 3x3 
pexel smoothing were used (filter im­
pulse response width is 7 pixels). 
Synthetic motion, velocity (1,1) and 
(1,-1) piexles, e - average speed 
error, crs - velocÎty standard devi­
ation. 
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