TADI: Wavelets Master IMA/DIGIT Sorbonne Université

Dominique.Bereziat@lip6.fr
This lecture is derived from Nicolas Thome's one.

year 2023-2024

Content

Part 1: Fourier Transform, Short Time Fourier Transform Recall: vector space espaces and important properties to know

Fourier transform Short time Fourier Transform

Part 2: Wavelets

Part 3: discrete wavelet transform for images, applications

Vector space (1)

- Field: $(\mathbb{K},+,\cdot)$ a set with two operations (internal composition laws, denoted + and \cdot) In general and in this lecture $\mathbb{K}=\mathbb{R}$ or \mathbb{C}) and such as + is commutative $(\forall \lambda, \mu \in \mathbb{K}, \lambda + \mu = \mu + \lambda)$, 0 is the neutral element for + and 1 for \cdot
 - ▶ internal law: $\forall x, y \in \mathbb{K}, x + y \in \mathbb{K}$
 - ▶ neutral element: $\forall x \in \mathbb{K}, x + 0 = x$
- **Vector space**: $(E, +, \cdot)$ is a vector space over the field $\mathbb K$ if:
 - $ightharpoonup \mathbb{K}$ is a field (two internal composition laws also denoted + and \cdot by abuse of language)
 - ▶ + is an internal commutative law on $E: E \times E \rightarrow E$ (vector addition)
 - is an external law (left multiplication): $\mathbb{K} \times E \to E$ (also called multiplication by a scalar) such as:
 - is distributive over $+: \forall \lambda \in \mathbb{K}, \forall v, w \in E, \lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$
 - + is distributive over \cdot : $\forall \lambda, \mu \in \mathbb{K}, \forall v \in E, (\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$
 - ▶ 1 is the left neutral element of \cdot : $\forall v \in E, 1 \cdot v = v$
 - ightharpoonup An element v of E is a vector, in the remaining E is a vector space

Vector space (2)

- ▶ Vector subspace: $F \subset E$ is a vector subspace of E if:
 - F ≠ ∅
 - $\forall (\lambda, v, w) \in \mathbb{K} \times F \times F, \lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w \in F,$
- ▶ In other words: F is stable for linear combination
- Example of vector spaces:
 - $\triangleright (\mathbb{R}^n,+,\cdot),(\mathbb{R}^{\mathbb{N}},+,\cdot)$
 - ▶ The set of continuous functions from $\mathbb R$ into $\mathbb C$ is an $\mathbb C$ vector space (it is of infinite dimension)
- Scalar product: (or dot product, or inner product) the operation, denoted ⟨.,.⟩, such as:

$$E \times E \rightarrow \mathbb{R}$$
$$(v, w) \mapsto \langle v, w \rangle$$

is a scalar product if

- bilinear (linear on left, linear on right)
- **>** symmetric: $\langle v, w \rangle = \langle w, v \rangle$
- **positive:** $\langle v, v \rangle \geq 0$
- definite: $\langle v, v \rangle = 0 \Rightarrow v = 0$
- Norm: the scalar product defines the norm $\|v\|^2 = \langle v, v \rangle$

Scalar product

- ► A fundamental operation: it allows two vectors to be compared, projecting one to another one
- Example of scalar product:
 - ightharpoonup in \mathbb{R}^n : $v=(v_1,\cdots,v_n),w=(w_1,\cdots,w_n)$ and

$$\langle v, w \rangle = \sum_{i=1}^n v_i \cdot w_i$$

for the set of complex summable (or integrable) functions on R:

$$\langle f,g\rangle=\int_{\mathbb{R}}f(t)\bar{g}(t)dt$$

- Euclidean space: a vector space with a scalar product
- Hilbert space: an Euclidean space of infinite dimension (space of functions)

Basis (1)

- A basis in E is a finite or countable (if E is of infinite dimension) set of vectors of E: $\mathcal{B} = \{b_1, \dots, b_n, \dots\}$ satisfying two conditions:
 - Innear independence property (free family): no element of $\mathcal B$ is a linear combination of others elements of $\mathcal B$:

$$\lambda_1 b_1 + \cdots + \lambda_n b_n = 0 \Rightarrow \lambda_1 = \cdots = \lambda_n = 0$$

- spanning property (spanning family): $\forall v \in E, \exists \lambda_1, \dots, \lambda_n, \dots$ such as $v = \sum_i \lambda_i b_i$
- ▶ Orthogonal basis: $\langle b_i, b_i \rangle = 0 \quad \forall i \neq j$
- ▶ Orthonormal basis: $\langle b_i, b_j \rangle = 0$ $\forall i \neq j$ and $\langle b_i, b_i \rangle = 1$ $\forall i$

Basis (2)

- Example in the Cartesian plane with the usual scalar product
 - the set reduced to the canonical vector $\vec{i} = \begin{pmatrix} 1 & 0 \end{pmatrix}$: linearly independent set
 - $\blacktriangleright \{\vec{i}, \vec{j}, \vec{j} + \vec{j}\}: \text{ spanning set}$
 - $\{2\vec{i}, \vec{i} + \vec{j}\}: \text{ basis}$
 - $\blacktriangleright \{2\vec{i},\vec{j}\}$: orthogonal basis
 - $ightharpoonup \{\vec{i}, \vec{j}\}$: orthonormal basis (canonical basis)
 - \blacktriangleright $\left(\frac{\vec{i}+\vec{j}}{\sqrt{2}},\frac{\vec{i}-\vec{j}}{\sqrt{2}}\right)$: orthonormal basis
- Consequences (without formal proof)
 - with a basis or a spanning set, one can represent any vector as $v = \sum_i \lambda_i b_i$
 - ▶ a linearly independent set can not represent all the vectors: for example, impossible to represent \vec{j} as a linear combination of \vec{i} (they are orthogonal)

Basis (3)

- Other consequences
 - Redundancy: a spanning set which is not a basis is a redundant set: there are too many vectors (at least one)
 - Redundancy: the representation of a vector is no more unique. For example with the spanning set $\{\vec{i}, \vec{j}, \vec{i} + \vec{j}\}$ and the vector $2 \cdot \vec{i} + \vec{j}$, one can exhibit two different linear combinations:

$$2 \cdot \vec{i} + \vec{j} = 2 \cdot \vec{i} + 1 \cdot \vec{j} + 0 \cdot (\vec{i} + \vec{j})$$

= $1 \cdot \vec{i} + 0 \cdot \vec{j} + 1 \cdot (\vec{i} + \vec{j})$

Non orthogonal basis: the representation is unique but the determination of coefficients λ_i is not easy. In general:

$$v = \sum_{i} \lambda_{i} b_{i} \neq \sum_{i} \langle v, b_{i} \rangle b_{i}$$

Orthogonal basis: we have $\langle b_i, b_i \rangle = 0, i \neq j$ and

$$v = \sum_{i} \left\langle v, \frac{b_{i}}{\|b_{i}\|} \right\rangle \frac{b_{i}}{\|b_{i}\|}$$

determination of λ_i are direct with the scalar product.

► Use of an orthonormal basis simplifies calculus

Conclusion

- Goals of theses recalls? Find suitable spaces of representation. Then find adapted basis.
- ▶ A well known example: Fourier Series! The T − periodic functions may write as:

$$x(t) = \sum_{n \in \mathbb{N}} a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right)$$

$$a_n = \frac{2}{T} \int_0^T x(t) \cos\left(\frac{2\pi nt}{T}\right) dt \quad b_n = \frac{2}{T} \int_0^T x(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

Alternative writing:

$$x(t) = \sum_{k \in \mathbb{Z}} c_k e^{\frac{2i\pi kt}{T}}$$
 (1)

$$c_k = \frac{1}{T} \int_0^T x(t) e^{\frac{-2i\pi kt}{T}} dt$$
 (2)

Here, we recognize the scalar product of a functional space:

$$c_k = \left\langle x, e^{\frac{2i\pi kt}{T}} \right\rangle$$
 and an orthonormal basis: $\{\phi_k\}_{k \in \mathbb{Z}}$ with

Content

Part 1: Fourier Transform, Short Time Fourier Transform

Recall: vector space espaces and important properties to know Fourier transform

Short time Fourier Transform

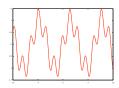
Part 2: Wavelets

Part 3: discrete wavelet transform for images, applications

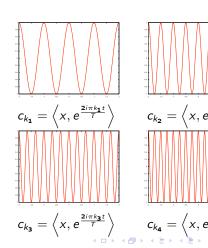
Fourier Series (1)

- ► Representation of the periodic functions
- \triangleright Coefficient c_k are called Fourier coefficients
- ▶ The periodic function f is represented by the countable sequence $(c_k)_{k \in \mathbb{Z}}$
- ► Graphical interpretation:

Given the following periodic signal:



We have 8 non null Fourier coefficients: $c_{k_i} = c_{-k_i}, i = 1, \cdots, 4$ describing the 4 modes (pure frequencies) of this signal



Fourier Series (2)

- Remark:
 - \triangleright x even function \Rightarrow $c_k = c_{-k}$
 - \triangleright x odd function \Rightarrow $c_k = -c_{-k}$

On the previous example: linear combination of 4 cosine functions with various frequencies \Rightarrow even function.

- Exercises:
 - ▶ show that the set $\{e^{\frac{2i\pi kt}{T}}\}_{k\in\mathbb{Z}}$ is an orthonormal basis
 - determine the Fourier coefficients of the function $t\mapsto \cos(2\pi\frac{t}{T})$
 - determine the Fourier coefficients of the Sawtooth wave (use a integration by parts to determine the integral of $t\mapsto te^{-2i\pi\frac{kt}{T}}$)
- ► See also: BIMA lecture on Fourier Transform

Fourier Transform (1)

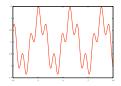
- Applied on non-periodic function, the Fourier Series formulae does not work: $T=+\infty$ and $e^{2i\pi k\frac{t}{T}}=1$, not a basis
- Extension to non-periodic functions: the Fourier Transform defined by

$$X(f) = \int_{\mathbb{R}} x(t)e^{-2i\pi ft}dt, f \in \mathbb{R}$$

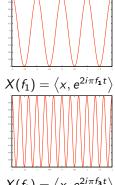
- ightharpoonup x must be an integrable function 1 . X is a continuous function on $\mathbb C$ and is an element of a vector space:
 - with the scalar product $\langle f,g\rangle=\int_{\mathbb{R}}f(t)\bar{g}(t)dt$
 - with the orthonormal basis: $\left\{t\mapsto e^{2i\pi ft}\right\}_{f\in\mathbb{R}}$, an element of the basis is the function $t\mapsto e^{2i\pi ft}$ indexed by the real parameter f

Same interpretation as the Fourier Series but on a continuous range of frequency

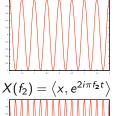
Given the following signal

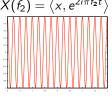


8 non null values for the Fourier transform: $X(f_i) = X(-f_i), i =$ $1, \cdots, 4$ describing the 4 modes of this signal









$$X(f_4) = \langle x, e^{2i\pi f_4 t} \rangle$$

Fourier Transform (3)

Interpretation, reconstruction

- Interpretation:
 - magnitude: $|X(f)| = \sqrt{X(f)\bar{X}(f)}$, or spectral amplitude, gives the quantity of "pure" frequency f available in the signal x
 - ▶ phase: $\phi(f) = \arctan\left(\frac{\Re(X(j))}{\Im(X(f))}\right)$, gives the shift with the basis function $e^{2i\pi ft}$
 - fundamental or null frequency, f = 0, is the integral of the signal:

$$X(0) = \int_{\mathbb{R}} x(t)dt$$

▶ As with Fourier Series, reconstruction is possible:

$$x(t) = \int_{\mathbb{R}} X(f)e^{2i\pi ft}dt$$

FS versus FT

Fourier Series	Fourier Transform
x T-periodic functions	x integrable function
$c_k = \frac{1}{T} \int_0^T x(t) e^{-2i\pi \frac{k}{T}t} dt$	$X(f) = \int_{\mathbb{R}} x(t)e^{-2i\pi ft}dt$
$k \in \mathbb{Z}$, $c_k \in \mathbb{C}$	$X: \mathbb{R} o \mathbb{C}$
$x(t) = \sum_{k \in \mathbb{Z}} c_k e^{2i\pi \frac{k}{T}t}$	$x(t) = \int_{\mathbb{R}} X(f)e^{2i\pi ft}df$

► To summary:

- Fourier Series: periodic functions, countable orthonormal basis $\left(e^{2i\pi\frac{k}{T}t}\right)_{k\in\mathbb{Z}}$
- Fourier Transform: integrable functions, uncountable orthornormal basis $\left(e^{2i\pi ft}\right)_{f\in\mathbb{R}}$

2-D Fourier Transform (1)

- ► An image is a non stationary function with a compact support, then is a non periodic function, Fourier Series are not suitable
- ▶ The 2-D Fourier Transform (for images) is built by separability:

$$X(f,g) = \int_{\mathbb{R}} \int_{\mathbb{R}} x(t,u)e^{-2i\pi(ft+gu)}dtdu$$
 (3)

$$= \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} x(t, u) e^{-2i\pi f t} dt \right\} e^{-2i\pi g u} du \tag{4}$$

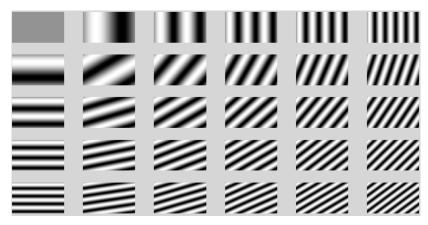
- $ightharpoonup X: \mathbb{R}^2 o \mathbb{C}$, (f,g) is a couple of vertical and horizontal frequencies
 - ▶ module of X (amplitude spectrum): \sqrt{XX} , gives the amount of the element basis contained in signal X
 - ▶ basis: complex sinusoid $((f,g) \mapsto e^{2\pi(ft+gu)})$
 - phase of X: gives the phase change between signal x and the element basis
- ► Signal *x* can be reconstructed from its spectrum *X* with the inverse Fourier transform:

$$x(t,u) = \iint_{\mathbb{R}^2} X(t,u) e^{2i\pi(ft+gu)} dfdg$$

2-D Fourier Transform (2)

Inverse Fourier transform: any image is a linear combinaision of basis images

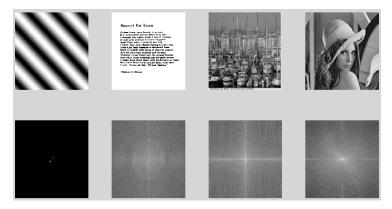
▶ an element of the basis, $(t, u) \mapsto \phi_{f,g}(t, u) = e^{2i\pi(ft+gu)}$, is an image!



2-D Fourier Transform (3)

Exemple sur des images

module of spectrum: localize low and high frequencies, determine predominant orientations



Fourier transform: some mathematical tools (1)

Property (1-D or 2-D)

- linearity: $TF(\alpha x + \beta y) = \alpha X + \beta Y$
- scaling:

$$y(t) = x(\alpha t)$$

 $Y(f) = \frac{1}{\alpha}X\left(\frac{f}{\alpha}\right)$

shift:

$$y(t) = x(t - t_0)$$

$$Y(f) = e^{-2i\pi f t_0} X(f)$$

$$|Y(f)| = |X(f)|$$

rotation (for 2-D FT):

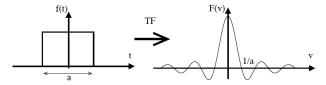
$$y(t, u) = x(t\cos\theta + u\sin\theta, -t\sin\theta + u\cos\theta)$$

$$Y(f, g) = X(f\cos\theta + g\sin\theta, -f\sin\theta + g\cos\theta)$$

Fourier transform: some mathematical tools (2)

Fourier transform of some usual 1-D functions

- Rectangle function: $Rect(t) = \begin{cases} 1 & \text{si} & |t| \leq \frac{1}{2} \\ 0 & \text{sinon} \end{cases}$
- $TF[t \mapsto \text{Rect}\left(\frac{t}{a}\right)](f) = \int_{-a/2}^{a/2} e^{-2i\pi ft} dt = a \frac{\sin(\pi a f)}{\pi a f} = a \operatorname{sinc}(\pi a f)$



- Gaussian function:
 - ► $TF(t \mapsto e^{-b^2t^2})(f) = \frac{\sqrt{\pi}}{|b|}e^{-\frac{\pi^2f^2}{b^2}}$, also a Gaussian function!
 - standard deviation in the frequency domain is inversely proportional to standard deviation in the time domain

Fourier transform: some mathematical tools (3)

Fourier transform of some usual 1-D functions

- **Dirac** delta function: δ . A generalized function (or distribution), formally defined by:
 - $\delta(x) = 0 \quad \forall x \neq 0$

► Can be seen as the limit of normal function: $\delta(t) = \lim_{a \to 0} \frac{1}{a} \operatorname{Rect} \left(\frac{t}{a}\right)$

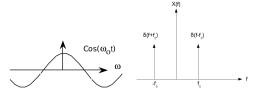
- Properties, for all function x

 - $ilde{r} ilde{x} \star \delta(t-t_0) = x(t-t_0)$, and then $x \star \delta(t) = x(t)$: δ neutral element of convolution
- Fourier transform:
 - $ightharpoonup FT(t\mapsto \delta(t-t_0))(f)=e^{-2i\pi ft_0}$
 - $ightharpoonup FT(t\mapsto e^{2i\pi f_0 t})(f)=\delta(f-f_0)$

Fourier transform: some mathematical tools (4)

Fourier transform of some usual 1-D functions

Cosine function (Euler formulae): $FT[t \mapsto \cos(2\pi f_0 t)] = \frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))$



► Sine function: $FT[t \mapsto \sin(2\pi f_0 t)] = \frac{i}{2}(\delta(f - f_0) - \delta(f + f_0))$

Fourier transform: some mathematical tools (5)

Convolution theorem

Recall, convolution:

$$z(t) = x \star y(t) = \int_{\mathbb{R}} x(t - t')y(t')dt'$$

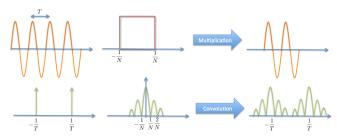
- Any linear filtering time invariant can be expressed by a convolution
- Convolution theorem:
 - ightharpoonup if $z = x \star y$ then $Z = X \times Y$
 - if $z = x \times y$ then $Z = X \star Y$
- Important tool for calculation of Fourier transform! (see the next slide as an example)
- ▶ In 2-D (image), the convolution theorem still holds:

$$z(t,u) = x \star y(t,u) = \int_{\mathbb{R}} \int_{\mathbb{R}} x(t-t',u-u')y(t',u')dt'du'$$

► Consequence: filtering in the frequency domain is strictly equivalent to convolution in time (space) domain

Digitization and discrete Fourier transform (1)

- Practically: we analyze discrete signals and not real functions. A discrete tool is needed: the Discrete Fourier Transform (DFT)
- ► Formalization:
 - 1. the signal to analyze is windowed to obtain a bounded support function:
 - $x_L(t) = x(t) \operatorname{Rect}(t/L)$ $FT: X_L(f) = L X * \operatorname{sinc}(\pi L f)$
- Example with a basic signal (cosine, pure frenquency)



Digitization and discrete Fourier transform (2)

- Practically: we analyze discrete signals and not real functions. A discrete tool is needed: the Discrete Fourier Transform (DFT)
- Formalization:
 - 1. the signal to analyze is windowed: $x(t) \Rightarrow x_L(t) = x(t) \operatorname{Rect}(t/L)$
 - 2. the windowed signal is sampled: a measure of this signal is done each T_s time step ($f_s = \frac{1}{T_s}$ is the sampling frequency):
 - $x_s(t) = x_L(t) \sum_{k \in \mathbb{Z}} \delta(t kT_s) \left(\sum_k \delta(t kT_s) \right)$: Dirac comb or train impulse)
 - Due to the windowing and the sampling frequency, we have $N = L/T_s$ measures
 - Fourier transform: $X_s(f) = X_L \star \sum_{k \in \mathbb{Z}} \delta(f k/T_s)$ (the Fourier transform of Dirac comb is a Dirac comb). Hence: $X_s(f) = \sum_{k \in \mathbb{Z}} X_L(f k/T_s)$
- \Rightarrow Sampling implies a periodic spectrum (of period $f_s = 1/T_s$)!

Digitization and discrete Fourier transform (3)

Sempling: Shannon theorem

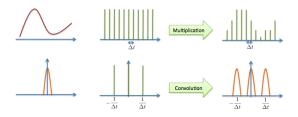


Figure: Sampling implies a periodic spectrum

Let X be a bounded frequency support and let f_m be the maximal frequency of X:

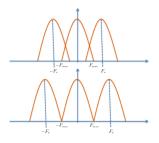
Theorem (Shannon)

If $f_s \ge 2f_m \Leftrightarrow T_s \le \frac{1}{2}T_m$, then the signal can be reconstructed without loss

Digitization and discrete Fourier transform (4)

Échantillonnage: théorème de Shannon

▶ Spectrum overlapping if $f_m > f_s/2$ and limit case:



ightharpoonup Recontruction: X_L is truncated with a Rectangle function, then an inverse Fourier Transform is applied: Shannon interpolation formula

Digitization and discrete Fourier transform (5)

- Practically: we analyze discrete signals and not real functions. A discrete tool is needed: the Discrete Fourier Transform (DFT)
- ► Formalization:
 - 1. the signal to analyze is windowed:

$$\triangleright$$
 $x_L(t) = x(t) \operatorname{Rect}(t/L)$

FT:
$$X_L(f) = L X * \operatorname{sinc}(\pi L f)$$

2. the windowed signal is sampled:

$$x_s(t) = x_L(t) \sum_{k \in \mathcal{I}} \delta(t - kT_s)$$

$$x_s(t) = x_L(t) \sum_{k \in \mathbb{Z}} \delta(t - kT_s)$$

$$FT: X_s(f) = \sum_{k \in \mathbb{Z}} X_L(f - k/T_s)$$

3. X_s is sampled at frequencies $f = \frac{k}{Nf_s}, k = 0 \cdots N - 1$:

► DFT(x)(k) =
$$\sum_{n=0}^{N-1} x_s(n) e^{-2i\pi \frac{kn}{N}}, k = -\frac{N}{2} \cdots \frac{N}{2} - 1$$

Practically: we denote $x(k) = x(kT_s)$ as the k-th sample of signal x, and the Discrete Fourier transform is defined as:

$$\mathsf{DFT}(x)(k) = X(k) = \sum_{n=0}^{N-1} x(n)e^{-2i\pi\frac{kn}{N}}, k = -\frac{N}{2} \cdots \frac{N}{2} - 1$$
 (5)

► DFT 2-D:

$$X(k,l) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} x(n,m) e^{-2i\pi \left(\frac{kn}{N} + \frac{lm}{M}\right)}$$

- ► The DFT has the same properties than the continuous Fourier transform:
 - linearity, translation and rotation of the signal/image
- Practically, DFT is used for filtering discrete signal/image in the frequency domain
- ► Inverse 2-D DFT:

$$x(n,m) = \sum_{l=0}^{N-1} \sum_{k=0}^{M-1} X(k,l) e^{2i\pi \left(\frac{kn}{N} + \frac{lm}{M}\right)}$$

2-D discrete Fourier transform

Filtering in frequency domain vs time domain

Filtering in the time domain:

$$y(n, m) = x \star h(n, m)$$

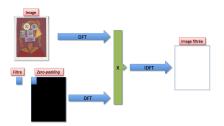
Figure 1

Destination Image -Target

The Convolution Operation Sequence

Filtering in the frequency domain:

$$y(n, m) = TFD^{-1}[X(u, v) \times H(u, v)]$$



Filtering in the frequency domain

- Several types of filters:
 - low-pass: low frequencies are kept, high frequencies are attenuated
 - high-pass: low frequencies are attenuated, high frequencies are attenuated
 - band-pass: a range of frequencies is kept, others frequencies are attenuated: allow an multi-scale analysis (scale=size of structures)
- ► See BIMA course (https://www-master.ufr-info-p6.jussieu. fr/parcours/ima/bima/): lectures 3, 4, 5 and associated tutorial and practical works.

Content

Part 1: Fourier Transform, Short Time Fourier Transform

Recall: vector space espaces and important properties to know Fourier transform

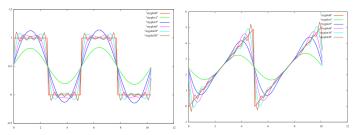
Short time Fourier Transform

Part 2: Wavelets

Part 3: discrete wavelet transform for images, applications

FT: limitations, issues (1)

 Compression, denoising: impossible to correctly represent edges (non derivable functions): Gibbs ringing artifacts appear after removing highest frequencies



▶ Visible in JPEG compression for example

FT: limitations, issues (2)

- ▶ In the Fourier space, structure size and orientation can be measured but it is not possible to localize (translation invariant): a wave has a period (size), an orientation (in 2-D), a phase, but not a localization.
- ► Two ways to represent a signal:
 - representation in time (or spatial if image) domain:

$$x(t) = \int_{\mathbb{R}} x(u)\delta(t-u)du$$

=> this basis localizes in time, but not in frequency (it can't see the size of structures)

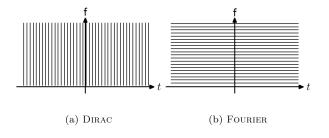
representation in the frequency domain (inverse FT):

$$x(t) = \int_{\mathbb{R}} X(f) e^{2i\pi ft} df$$

=> this basis localizes in frequency but not in time

FT: limitations, issues (3)

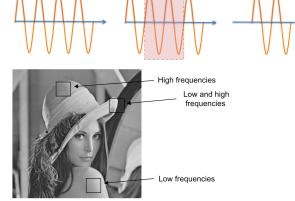
- Representation in time domain: null resolution in frequency, infinite resolution in time
- Representation frequency domain: infinite resolution in frequency, null resolution in time



- Consider two signals:
 - $y(t) = \sin(2\pi f_1 t) + \sin(2\pi f_2 t)$
 - $z(t) = \sin(2\pi f_1 t)u(t) + \sin(2\pi f_2 t)u(-t)$ with u(t) = 1 if t > 0 and 0 otherwise (Heavyside function)
 - y and z has the same spectrum!
- ▶ Need to analyze the signal both in time and in frequency domains!

Short Time Fourier Transform (1)

- Principe: perform a Fourier analysis on a window.
 - first the signal is windowed, the window being localized in the time domain, second a Fourier Transform is applied
 - ▶ the STFT has two parameters:
 - a parameter of time localization
 - a parameter of frequency localization



▶ Other name: Windowed Fourier Transform

Short Time Fourier Transform (2)

▶ Definition:

$$STFT(x)(f,b) = X(f,b) = \int_{\mathbb{R}} x(t)\bar{w}(t-b)e^{-2i\pi ft}dt$$

with w an admissible window, i.e. $\int_{\mathbb{R}} |w(t)|^2 dt = 1$

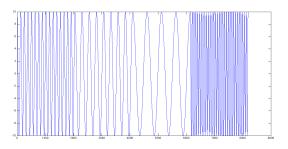
- Examples for w: Rectangle function, Triangle function, Gaussian function, . . .
- The family of functions $\phi_{f,b}(t) = w(t-b)e^{2i\pi ft}$ is spanning but redundant set (two parameters f and b)
 - ► STFT: $\phi_{f,b}(t) = w(t-b)e^{2i\pi ft}$: localization in frequency f and in time b
 - FT: $\phi_f(t) = e^{2i\pi ft}$: localization only in frequency
- Reconstruction is available if w is an admissible window:

$$x(t) = \int_{\mathbb{R}} \int_{\mathbb{R}} X(t,b) w(t-b) e^{2i\pi ft} df db$$

► Exercise: prove the reconstruction formula

Example

► Time-varying frequency signal:

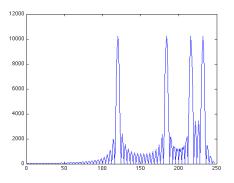


$$x(t) = \sum_{k=1}^{4} \cos(2\pi f_k t) \operatorname{Rect}\left(\frac{t - t_k}{w}\right)$$

Short Time Fourier Transform (4)

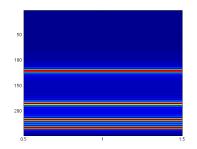
Exemple

Fourier transform of x: no localization in time!

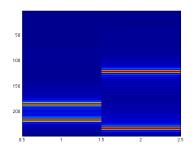


$$X(f) = \sum_{k=1}^{4} \frac{\delta(f - f_k) + \delta(f + f_k)}{2} \star e^{-2i\pi f t_k} \operatorname{sinc}(w\pi f)$$

Short Time Fourier Transform (5)

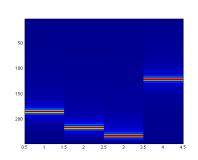


1 window: it is the standard Fourier Transform, so no localization in time

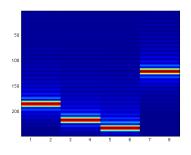


2 windows: gain in time resolution

Short Time Fourier Transform (6)

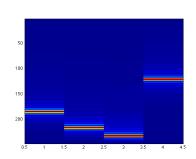


4 windows: gain in time resolution

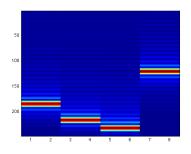


8 windows: loss of frequency localization and then frequency resolution! why?

Short Time Fourier Transform (6)

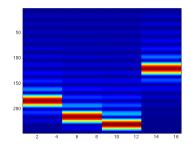


4 windows: gain in time resolution

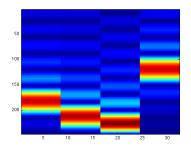


8 windows: loss of frequency localization and then frequency resolution! why? as the window becomes smaller, the FT (sinc) is lesser accurate

Short Time Fourier Transform (7)



16 windows: loss of frequency resolution!



32 windows: loss of frequency resolution!

Short Time Fourier Transform (8)

- ► Conclusion: there is an optimal configuration to analyze the *x* signal
 - with less than 4 windows: low time resolution but good frequency resolution
 - more than 4 windows: maximal time resolution, but low frequency resolution résolution fréquentielle moins bonne
 - ▶ 4 windows is the optimal in this case
- See Exercise 5 in tutorial works

Short Time Fourier Transform (9)

Limitations, issues

- Window length is a critical parameter:
 - must be the same order of value than the period of the signal to be analyzed
 - but not so large, because the time resolution will be degraded
- Let us formally define the time and frequency resolution of a x signal:

Time resolution (standard deviation, dispersion):

$$\sigma_t = \int_{\mathbb{R}} (t - \langle t \rangle)^2 |x(t)|^2 dt$$

Frequency resolution (standard deviation, dispersion):

$$\sigma_f = \int_{\mathbb{R}} (f - \langle f \rangle)^2 |X(f)|^2 df$$

► small standard deviation ⇒ high localization ⇒ high resolution

Heisenberg uncertainty principle

- ► A general principle apply to any waves (and more):
 - impossible to localize both in time and in frequency with a infinite precision a signal
 - **\rightarrow** time and frequency resolution are bounded: $\sigma_t \sigma_f \geq \frac{1}{4\pi}$

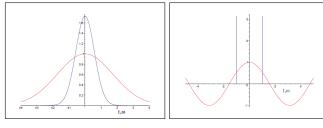
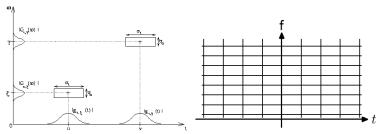


Figure: Left: Gaussian signal (red) and its spectrum, right: Cosine signal and its spectrum

► The bound is reached with the Gaussian function!

Heisenberg boxes

1. Time and frequency resolution can be represented using the Heisenberg boxes:



- 2. Here: σ_t and σ_f are constant.
- 3. Too large window: impossible to analyze non stationary signals (loss of localization in time)
- 4. Too small window: loss of localization in frequency
- 5. Idea of wavelets: analyze in time and frequency more suitable (i.e. Heisenberg boxes of various size), and design of an orthonormal basis (STFT is not a basis)

Content

Part 1: Fourier Transform, Short Time Fourier Transform

Part 2: Wavelets

Continuous wavelets

Multiresolution Analysis (MRA)

Haar wavele

The discrete wavelet transform

Part 3: discrete wavelet transform for images, applications

Continuous wavelet transform (CWT): definition

- $ightharpoonup E = L^2(\mathbb{R})$ set of real function squared integrable (a vector space)
- Let $x \in E$ be a signal, the continuous wavelet transform is a function $(a, b) \mapsto g(a, b)$ defined by:

$$g(a,b) = \frac{1}{\sqrt{a}} \int_{\mathbb{R}} x(t) \bar{\psi}_{a,b}(t) dt = \langle x, \psi_{a,b} \rangle$$

such as $a \neq 0$ and:

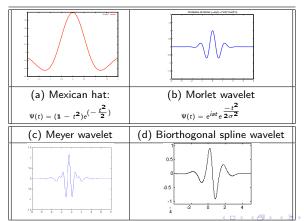
$$\psi_{\mathsf{a},\mathsf{b}} = \frac{1}{\sqrt{\mathsf{a}}} \psi\left(\frac{\mathsf{t}-\mathsf{b}}{\mathsf{a}}\right)$$

where ψ is called mother wavelet

- \blacktriangleright Functions $\psi_{a,b}$ are translated/dilated version of ψ
- ▶ b: position (localization in time), a: scale (analog of the period of Fourier analysis)

Mother wavelet

- $\blacktriangleright \psi$ must be admissible:
 - has a bounded support
 - ightharpoonup is of mean null ($\int \psi = 0$)
 - be oscillating $|\psi| \neq \psi$
 - $\psi \in E$ (squared integrable)
 - $\psi(t) \in \mathbb{R} \text{ or } \mathbb{C}$
- Examples:



CWT versus STFT

- Similarity:
 - Both are redundant analysis (projection onto redundant spanning families)
 - ▶ Both localize in time and in frequency domains:

$$\qquad \qquad \mathsf{CWT:} \ \psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right)$$

- Difference:
 - STFT: has a fixed resolution in time and in frequency (Heiseinberg boxes have the same size)
 - CWT: has a variable resolution in time and in frequency
- ► Interpretation for the CWT:
 - allow a multiscale analyze: the support in the time domain is more or less large (the mother wavelet is dilated at various size)
- Let $\sigma_t^{a,b}$ et $\sigma_f^{a,b}$ be the respective time and frequency resolution of $\psi_{a,b}$:

$$\sigma_f^{a,b} = \frac{1}{3}\sigma_f^{1,0}$$

with $\sigma_t^{1,0}$ and $\sigma_f^{1,0}$ the time and frequency resolution of mother wavelet ψ

Heisenberg boxes

► Recall: Heinsenberg incertitude principle, $\sigma_t \sigma_f \geq \frac{1}{4\pi}$, boxes have a minimal area

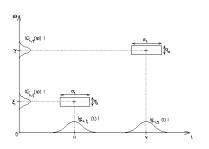


Figure: Heisenberg box of FT

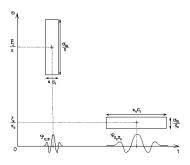


Figure: Heisenberg box of CWT

CWT: interpretation

Wavelet as a multi-scale analysis tool

- Findings:
 - low frequencies are less localized in time: a low frequency signal has a long period and is almost stationary
 - high frequencies are better localized in time (small period) and non stationary, their localization in time are important for analysis
- ▶ Wavelets: a frequency is analyzed at a suitable time resolution:
 - 1. low frequency (scale a is large): low time resolution, high frequency resolution
 - 2. high frequency (scale *a* is small): high time resolution, low frequency resolution

There is a compromise between time and frequency resolution (Heisenberg)

Reconstruction

Formally:

$$x(t) = rac{1}{C_{\psi}} \int_{\mathbb{R}} \int_{\mathbb{R}} a^{-2} g(a,b) \psi_{a,b}(t) dadb$$

with

$$C_{\psi} = \int_0^{+\infty} \frac{|\psi(f)|^2}{f} df$$

- lacktriangle If $C_{\psi} < \infty$ (admissibility condition), reconstruction is possible
- The family is redundant: practically, reconstruction is costly, but:
 - a countable set of values for (a, b) → g(a, b) is sufficient to reconstruct x,
 - practically, a continuous wavelet transform is not suitable for discrete signal: a discrete formulation of wavelet is requested

Content

Part 1: Fourier Transform, Short Time Fourier Transform

Part 2: Wavelets

Continuous wavelets

Dyadic wavelets

Multiresolution Analysis (MRA

Haar wavelet

The discrete wavelet transform

Part 3: discrete wavelet transform for images, applications

Reducing redundancies: Dyadic wavelets

- ▶ The continuous wavelet transform is sampled using a *dyadic* position:
 - $\rightarrow a 2^{-j}$ $b = k \times 2^{-j}$, $k = 0, \dots, 2^{j} - 1$
- $i \in \mathbb{N}$ is the time resolution (or representation scale)
- $\psi_{a,b}(t) = \sqrt{2^j}\psi(2^jt-k) = \psi_{b}^{i}(t)$ has a support of length 2^{-j} and a position at k
- ▶ For j fixed, $\psi_{\nu}^{j}(t)$ functions have disjoint and contiguous supports. Let ψ be a mother wavelet with support on [0,1]:
 - ▶ j=0: k=0. Only one function for this scale, $\psi_0^0(t)=\psi(t)$ ▶ j=1: k=0 or 1. Two functions for this scale:
 - - position 0: $\psi_0^1(t) = \sqrt{2}\psi(2t)$ with support on $[0, \frac{1}{2}]$
 - position 1: $\psi_1^1(t) = \sqrt{2}\psi(2t-1)$ with support on $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$
 - i = 2: k = 0, 1, 2, 3, 4 functions:
 - position 0: $\psi_0^1(t) = \sqrt{2}\psi(4t)$, support on $[0, \frac{1}{4}]$
 - position 1: $\psi_1^1(t) = \sqrt{2}\psi(4t-1)$, support on $\begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}$
 - position 2: $\psi_2^1(t) = \sqrt{2}\psi(4t-2)$, support on $\begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}$
 - position 3: $\psi_3^1(t) = \sqrt{2}\psi(4t-3)$, support on $\begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}$

Dyadic wavelets

- ▶ Redundancy is reduced: $(a,b) \in \mathbb{R}^2 \Rightarrow (j,k), j \in \mathbb{N}, 0 \leq k < 2^j$: countable family
- ▶ We obtain a discrete sequence of coefficients:

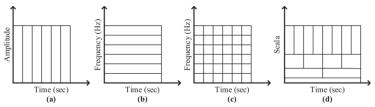
$$g_k^j = \left\langle x, \psi_k^j \right\rangle$$

Reconstruction:

$$x(t) = \sum_{j \in \mathbb{N}} \sum_{k=0}^{j} g_k^j \psi_k^j(t)$$

▶ Remark: this transform applies on continuous signal (x is continuous as well the elements of the family, $t \mapsto \psi_k^j(t)$). We do not yet have a discrete transform.

Dyadic wavelets transform versus FT, STFT



- (a) Localization in time domain
- (b) Localization in frequency domain (FT)
- (c) Localization in time and frequency domains (STFT)
- (d) Localization in scale and time domains (dyadic wavelet)

Content

Part 1: Fourier Transform, Short Time Fourier Transform

Part 2: Wavelets

Continuous wavelets

Multiresolution Analysis (MRA)

Haar wavele

The discrete wavelet transform

Part 3: discrete wavelet transform for images, applications

Motivations

- Dyadic wavelets: the family is not redundant but the basis is not orthogonal (eg: $\left\langle \psi_k^j, \psi_{2k}^{j+1} \right\rangle \neq 0$)
- Multiresolution analysis: formalism to build wavelet orthornormal basis
- ▶ Principle: project the signal into nested vector subspaces



Multiresolution analysis (2)

Definition

- A multiresolution analysis of $E=L^2(\mathbb{R})$ is a sequence of subspaces $(V^j)_{j\in\mathbb{Z}}$ such as:
 - 1. information contained in resolution j is also contained in resolution $j+1\colon \forall j\in\mathbb{Z}\quad V^j\subset V^{j+1}$
 - 2. intersection of all V^j is empty: $\bigcap_{j\in\mathbb{Z}}V^j=\lim_{j\to-\infty}V^j=\emptyset$
 - 3. union of all V^j is E: $\bigcup_{j\in\mathbb{Z}}V^j=\lim_{j\to+\infty}V^j=E$
 - 4. resolution j derives from resolution j+1 by a dilation of factor 2: $\forall j \in \mathbb{Z} \quad f \in V^j \Leftrightarrow f(2.) \in V^{j+1}$
 - 5. it exists a function $\phi \in E$ such as the family $(\phi(.-k))_{k \in \mathbb{Z}}$ is an orthonormal basis in V^0
- Consequences:
 - ▶ from 4. and 5. it comes: $\forall k \in \mathbb{Z}$ $f \in V^j \Leftrightarrow f(.-k2^j) \in V^j$. In other words $(\phi(.-k2^j))_{k\in\mathbb{Z}}$ is a basis in V^j
 - from 3.: one can reconstruct a signal $x \in E$ from its projections into V^j
- $ightharpoonup \phi$ is known as scaling function (or wavelet father)
- V^j are known as the approximation subspaces

Multiresolution analysis (3)

- 1. Consider $\phi(t) = 1$ on [0, 1[, null otherwise
- 2. This is Haar scaling function
- 3. What does V^0 represent?, V^j ?

- 1. Consider $\phi(t) = 1$ on [0, 1[, null otherwise
- 2. This is Haar scaling function
- 3. What does V^0 represent?, V^j ?
 - ▶ $E = L^2(\mathbb{R})$, scalar product: $\langle f, g \rangle = \int_{\mathbb{R}} f(t) \overline{g}(t) dt$
 - suppose $\phi(t-k)$ is a basis in V^0 then if $f \in V^0$, $f(t) = \sum_{k \in \mathbb{Z}} \langle f, \phi(.-k) \rangle \phi(t-k) = \sum_k c_k \phi(t) \text{ with}$ $c_k = \int_{\mathbb{R}} f(t) \bar{\phi}(t-k) dt = \int_{t}^{k+1} f(t) dt$
 - then V^0 is the space of functions constant on intervals [k, k+1[
 - and then V^1 is the set of functions constant on intervals [k/2, (k+1)/2[if condition 4 holds.
 - ▶ and then V^j is the set of functions constants on intervals $[2^{-j}k, 2^{-j}(k+1)]$

Multiresolution analysis (3)

- 1. Consider $\phi(t) = 1$ on [0, 1[, null otherwise
- 2. This is Haar scaling function
- 3. What does V^0 represent?, V^j ?
- 4. Is Haar scaling function admissible to perform a multiresolution analysis of $E=L^2(\mathbb{R})$?

- 1. Consider $\phi(t) = 1$ on [0, 1[, null otherwise
- 2. This is Haar scaling function
- 3. What does V^0 represent?, V^j ?
- 4. Is Haar scaling function admissible to perform a multiresolution analysis of $E = L^2(\mathbb{R})$?
 - condition 5. is true: $\phi(.-k)$ is an orthonormal basis in V^0 , easy to verify
 - condition 1. $(V^j \subset V^{j+1})$: if $f \in V^j$ then f constant on intervals $[2^{-j}k, 2^{-j}(k+1)[$, and also constant on intervals $[2^{-(j+1)}k, 2^{-(j+1)}(k+1)[$ and we conclude $f \in V^{j+1}$
 - conditions 2. and 3. intuitively: integral of a function may be approximated by piecewise constant functions (integral definition in sense of Riemann)
 - condition 4. (transition j to j+1): similar proof than for condition 1, f(2.) is a dilatation of f by a factor 2, then $f(2.) \in V^{j+1}$
- 5. Haar scaling function is an admissible solution for a multiresolution analysis of E (see Ex 6 tutorial works)

Multiresolution analysis (4)

Projection into V^j

- Let ϕ be an admissible scaling function in $E = L^2(\mathbb{R})$
- Let's define: $\phi_k^j(t) = \sqrt{2^j}\phi(2^jt k)$, then:
 - $lackbox{}\left(\phi_k^j
 ight)_{k\in\mathbb{Z}}$ is an orthonormal basis in V^j
 - derives from conditions 4. and 5.
- ▶ Given $x \in E$, its projection into V^j is:

$$x^{j}(t)=(P_{j}x)(t)=\sum_{k}s_{k}^{j}\phi_{k}^{j}(t)$$

with:

$$s_k^j = \left\langle x, \phi_k^j \right\rangle_{V^j} = \int_{\mathbb{R}} \sqrt{2^j} x(t) \phi(2^j t - k) dt$$

we recognize a scalar product for V^j

- \triangleright s_k^j are the approximation coefficients at resolution j
- ightharpoonup Subspaces V^j are dyadic spaces

Multiresolution analysis (5)

Complementary subspaces (1)

- Last step: obtain an orthonormal basis
- ▶ Fundamental idea: as $V^j \subset V^{j+1}$ then

$$\exists W^j$$
 such as $V^{j+1} = V^j \oplus W^j$

 W^j is known as the details subspace for resolution j

- $lackbox{W}^j$ is a complementary subspace orthogonal to V^j in V^{j+1}
- ▶ We call wavelets (or details functions) the set of functions $\left(\psi_k^j\right)_{k\in\mathbb{Z}}$ spanning W^j and pairwise orthogonal
- Having an orthonormal basis in V^j and in W^j , we have an orthonormal basis in $V^{j+1}: \left(\phi_k^i\right)_{k\in\mathbb{Z}} \cup \left(\psi_k^j\right)_{k\in\mathbb{Z}}$ and

$$x^{j+1}(t) = \underbrace{\sum_{k \in \mathbb{Z}} s_k^j \phi_k^j(t)}_{ ext{projection into } V^j} + \underbrace{\sum_{k \in \mathbb{Z}} d_k^j \psi_k^j(t)}_{ ext{projection into } W^j}$$

 $d_k^j = \langle x, \psi_k^j \rangle$ are known as the details coefficients

Multiresolution analysis (5)

Complementary subspaces (2)

► Recursively we have:

$$V^{j+1} = V^{j} \oplus W^{j} = V^{j-1} \oplus W^{j-1} \oplus W^{j}$$

$$= V^{0} \oplus W^{0} \oplus W^{1} \oplus \cdots \oplus W^{j-1} \oplus W^{j}$$

$$x^{j+1}(t) = \sum_{k} s_{k}^{0} \phi_{k}^{0}(t) + \sum_{i=0}^{j} \sum_{k} d_{k}^{i} \psi_{k}^{i}(t)$$

- ▶ Basis in V^{j+1} contains:
 - ▶ that of V⁰
 - ▶ that of W^0 , W^1 , up to W^j
- $\rightarrow j \rightarrow +\infty$:

$$E = L^2(\mathbb{R}) = V^0 \bigoplus_{i=0}^{+\infty} W^i$$

$$ightharpoonup x(t) = \sum_{k} s_{k}^{0} \phi_{k}^{0}(t) + \sum_{i=0}^{+\infty} \sum_{k} d_{k}^{i} \psi_{k}^{i}(t)$$

Multiresolution analysis (5)

Complementary subspaces (3)

- ▶ Subspaces V^j are also nested when j < 0: $\cdots \subset V^{-1} \subset V^0$
- ► Then:

$$E = V^{0} \bigoplus_{i=0}^{+\infty} W^{i}$$

$$= V^{-1} \oplus W^{-1} \bigoplus_{i=0}^{+\infty} W^{j}$$

$$= V^{-j} \oplus W^{-j} \oplus \cdots \oplus W^{-1} \bigoplus_{i=0}^{+\infty} W^{j}$$

$$= \bigoplus_{j=-\infty}^{+\infty} W^{j}$$

$$x(t) = \sum_{i=-\infty}^{+\infty} \sum_{k} d_{k}^{j} \psi_{k}^{j}(t)$$

Multiresolution analysis (6)

Conclusion

- \blacktriangleright The multiresolution analysis allows to build a basis of orthogonal wavelets $\left(\psi_{k}^{i}\right)$
- Subspaces V^j have a dyadic basis $\left(\phi_k^j\right)$ derived from the scaling function ϕ (also named father wavelet): $\phi_k^j(t) = \sqrt{2^j}\phi(2^jt k)$
- Complementary subspaces W^j also have a dyadic basis derived from the mother wavelet ψ : $\psi^j_{\nu}(t) = \sqrt{2^j}\psi(2^jt k)$
- lssue: choose ψ

Content

Part 1: Fourier Transform, Short Time Fourier Transform

Part 2: Wavelets

Continuous wavelets

Dyadic wavelets

Haar wavelet

The discrete wavelet transform

Part 3: discrete wavelet transform for images, applications

Haar wavelet (1)

- ► $E = L^2([0,1[), x : E \to \mathbb{R}$
- ► Scaling function (Haar):

$$\phi(t) = egin{cases} 1 & 0 \leq t < 1 \ 0 & ext{otherwise} \end{cases}$$

▶ Bases of subspaces V^j : $\phi_k^j(t) = \sqrt{2^j}\phi(2^jt - k)$:

$$\phi_k^j(t) = egin{cases} \sqrt{2^j} & rac{k}{2^j} \le t < rac{k+1}{2^j} \\ 0 & ext{otherwise} \end{cases}$$

- We conclude that:
 - $ightharpoonup V^0$ is the set of constant functions on [0,1[, spanned by ϕ^0_0
 - V is the set of constant functions on $[0,\frac{1}{2}[$ and $[\frac{1}{2},1[$, spanned by ϕ_0^1 and ϕ_1^1
 - $ightharpoonup V^j$ is the set of constant functions on $[rac{k}{2^j},rac{k+1}{2^j}[,\ k=0,\cdots,2^j-1]]$
 - $ightharpoonup V^{-1}$ do not make sense

Haar wavelet (2)

▶ The mother wavelet can be chosen as:

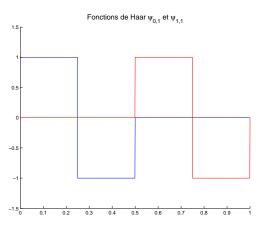
$$\psi(t) = egin{cases} 1 & 0 \leq t < rac{1}{2} \ -1 & rac{1}{2} \leq t < 1 \ 0 & ext{otherwise} \end{cases}$$

And for other wavelets: $\psi_k^j(t) = \sqrt{2^j}\psi(2^jt - k)$:

$$\psi_k^j(t) = \begin{cases} \sqrt{2^j} & \frac{k}{2^j} \le t < \frac{k}{2^j} + \frac{1}{2^{j+1}} \\ -\sqrt{2^j} & \frac{k}{2^j} + \frac{1}{2^{j+1}} \le t < \frac{k+1}{2^j} \\ 0 & \text{otherwise} \end{cases}$$

Haar wavelet (3)

$$V^2 = \phi_0^2 \oplus \phi_1^2 \oplus \phi_2^2 \oplus \phi_3^2 = \phi_0^1 \oplus \phi_1^1 \oplus \psi_0^1 \oplus \psi_1^1$$



- ► Easy to verify that (tutorial work):

Haar wavelet (4)

Transition from resolution j + 1 to j (compression)

- $ightharpoonup \phi_k^j$ scaling functions: approximation at resolution j
- $\blacktriangleright \psi_k^j$ wavelet functions: details at resolution j
- ▶ By definition of ϕ_k^j and ψ_k^j , we have:

$$\phi_k^j = \frac{\phi_{2k}^{j+1} + \phi_{2k+1}^{j+1}}{\sqrt{2}} \quad \psi_k^j = \frac{\phi_{2k}^{j+1} - \phi_{2k+1}^{j+1}}{\sqrt{2}}$$
 (6)

- And: $x^{j+1}(t) = \sum_{k=0}^{2^{j}-1} s_k^j \phi_k^j(t) + \sum_{k=0}^{2^{j}-1} d_k^j \psi_k^j(t) = \sum_{k=0}^{2^{j+1}-1} s_k^{j+1} \phi_k^{j+1}(t)$
- We derive:

$$s_k^j = \frac{s_{2k}^{j+1} + s_{2k+1}^{j+1}}{\sqrt{2}}$$
 $d_k^j = \frac{s_{2k}^{j+1} - s_{2k+1}^{j+1}}{\sqrt{2}}$

► Inversion of system (6)

$$\phi_{2k}^{j+1} = \frac{\phi_k^j + \psi_k^j}{\sqrt{2}} \quad \phi_{2k+1}^{j+1} = \frac{\phi_k^j - \psi_k^j}{\sqrt{2}}$$

- ► We have: $x^{j+1}(t) = \sum_{k=0}^{2^{j}-1} s_k^j \phi_k^j(t) + \sum_{k=0}^{2^{j}-1} d_k^j \psi_k^j(t) = \sum_{k=0}^{2^{j+1}-1} s_k^{j+1} \phi_k^{j+1}(t)$
- ► We derive:

$$s_{2k}^{j+1} = \frac{s_k^j + d_k^j}{\sqrt{2}} \quad s_{2k+1}^{j+1} = \frac{s_k^j - d_k^j}{\sqrt{2}}$$

Content

Part 1: Fourier Transform, Short Time Fourier Transform

Part 2: Wavelets

Continuous wavelets

Dyadic wavelets

Multiresolution Analysis

Haar wavelet

The discrete wavelet transform

Part 3: discrete wavelet transform for images, applications

The discrete wavelet transform (1)

- Haar: scaling and details functions or coefficients at a given resolution derive from a linear combination of scaling and wavelet functions or coefficients at the superior resolution. This can be generalized
- $ightharpoonup V^0 \subset V^1$:
 - ▶ then $\phi(t) \in V^0 \Rightarrow \phi(t) \in V^1$
 - ▶ then $\exists h(n)$ such as $\phi(t) = \sum_{n} h(n)\phi_{n}^{1}(t)$
 - $\blacktriangleright \text{ then } \phi(t) = \sqrt{2} \sum_{n} h(n) \phi(2t n)$
- ▶ This holds for any $V^{j-1} \subset V^j$ and generalizes as follow:
- Consequence on approximation coefficients:

 - $s_k^{j-1} = \sum_n h(n) s_{n+2k}^j = \sqrt{2} \sum_{n'} h(n'-2k) s_{n'}^j$
 - $ightharpoonup s_k^{j-1} = h^* \star s^j(2k)$ (with h^* the mirror filter of h)
- $\rightarrow \phi \leftrightarrow h$

The discrete wavelet transform (2)

- Same discussion on details subspaces W^j
- $ightharpoonup W^0 \subset V^1$:
 - $\psi(t) \in W^0 \Rightarrow \psi(t) \in V^1$
 - \blacksquare g such as $\psi(t) = \sum_n g(n)\phi_n^1(t) = \sqrt{2}\sum_h g(n)\phi(2t-n)$
- Superior resolutions:

$$\psi_k^{j-1}(t) = \sum_n g(k) \phi_{n+2k}^j(t) = \sqrt{2^j} \sum_n g(n) \phi(2^j t - n - 2k)$$

- Consequence on details coefficients:
 - $d_k^{j-1} = \left\langle x, \psi_k^{j-1} \right\rangle$
 - $d_k^{j-1} = \sum_n g(n) \left\langle x, \phi_{n+2k}^j \right\rangle$
 - $d_k^{j-1} = \sum_n g(n) s_{n+2k}^j$
 - $d_k^{j-1} = g^* \star s^j(2k)$
- $\blacktriangleright \psi \leftrightarrow g$
- ► Reconstruction:

$$s_k^{j+1} = \sum_n s_n^j h(k-2n) + \sum_m d_m^j g(k-2m)$$

The discrete wavelet transform (3)

Link between ϕ and h

- ▶ Build an orthonormal basis, two ways: choose ϕ (see Haar scaling function), or choose h
- ► Indeed:
 - ϕ and h are linked $(V^0 \subset V^1)$: $\phi(t) = \sqrt{2} \sum_n h(n) \phi(2t n)$
 - ▶ Apply FT on previous equation, introduce ω = 2πf, denote Φ = FT(φ), and $H(ω) = \sum_n h(n)e^{-inω}$
 - We have:

$$\Phi(\omega) = \frac{1}{\sqrt{2}} \Phi\left(\frac{\omega}{2}\right) H\left(\frac{\omega}{2}\right) = \prod_{j=1}^{+\infty} \frac{1}{\sqrt{2}} H\left(\frac{\omega}{2^j}\right)$$

- ▶ Then H can be derived from Φ and reciprocally
- ▶ *H* is a low-pass filter. Indeed:
 - ► $H(0) = \sqrt{2}\Phi(0)/\Phi(0/2) = \sqrt{2}$ (Φ(0) ≠ 0 because $\int \phi(t)dt$ can not be null)
 - From relation between Φ and H, it can been shown that $|H(\omega)|^2 + |H(\omega + \pi)|^2 = 2$, then $H(\pi) = 0$

The discrete wavelet transform (4)

Link between ψ and g, and h!

▶ Similarly, we have $(W^0 \subset V^1)$: $\psi(t) = \sqrt{2} \sum_n g(n) \phi(2t - n)$ then:

$$\Psi(\omega) = \frac{1}{\sqrt{2}} \Phi\left(\frac{\omega}{2}\right) G\left(\frac{\omega}{2}\right) = \prod_{j=1}^{+\infty} \frac{1}{\sqrt{2}} G\left(\frac{\omega}{2^j}\right)$$

- ► *G* is a high-pass filter:
 - G(0) = 0 as $\Psi(0) = \int \psi(t)dt = 0$ by definition (oscillating)
 - Again: $|G(\omega)|^2 + |G(\omega + \pi)|^2 = 2$ and then $G(\pi) = \sqrt{2}$
- Moreover, one can prove that:
 - ► $G(\omega) = -\Lambda(\omega)\bar{H}(\omega + \pi)$ with Λ verifying this two conditions: $\Lambda(\omega + 2\pi) \pm \Lambda(\omega) = 0$
 - ightharpoonup A solution is $\Lambda(\omega) = -e^{-i\omega}$
- Finally g can be derived from h:

$$G(\omega) = -e^{-i\omega}\bar{H}(\omega + \pi)$$

$$g(n) = (-1)^n h(1-n)$$
(7)

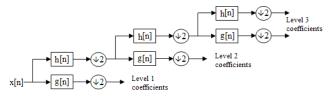
ightharpoonup g is the conjugate and mirror filter of h



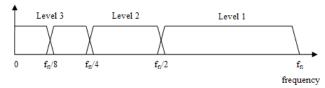
The discrete wavelet transform (5)

Cascade algorithm with mirror and conjugate filters

► The DWT is efficiently implemented using a series of low and high-pass filtering and sub-sampling (due to dyadic nature of MRA)



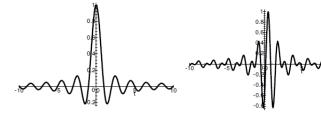
- ▶ low-pass filtering: low frequencies are captured with accurate frequency resolution, but poor time resolution
- high-pass filtering: high frequencies are captured with poor frequency resolution but an accurate time resolution



Other wavelet transforms (1)

Shannon wavelet

- ▶ We only know Haar wavelet: $h(n) = \begin{pmatrix} 1 & 1 \end{pmatrix}$, and $g(n) = \begin{pmatrix} 1 & -1 \end{pmatrix}$ (Important: do not forget to divide by $\sqrt{2}$ in practice!)
- Shannon wavelet (dual of Haar):
 - ► Haar: $\phi(t) = \text{Rect}(t) \Rightarrow \Phi(f) = \text{sinc}(\pi f)$
 - ► Shannon: $\phi(t) = \operatorname{sinc}(\pi t) \Rightarrow \Phi(\omega) = \operatorname{Rect}(\omega)$
 - ▶ We derive $H(\omega)$ then h: $h(n) = \text{sinc}\left(\frac{n\pi}{2}\right)$
 - ▶ then $G(\omega)$ from $g(n) = (-1)^n h(1-n) = (-1)^n \operatorname{sinc}\left(\frac{(1-n)\pi}{2}\right)$
 - **>** then $\Psi(\omega)$ and finally $\psi(t) = \frac{\cos(\pi t) \sin(2\pi t)}{\pi t}$



Other wavelet transforms (2)

Daubechies wavelet (1)

- ▶ Motivation: build a basis with *n* null moments and compact support
- $\blacktriangleright \psi$ has *n* null moments if:

$$\int_{\mathbb{R}} t^k \psi(t) dt = 0 \quad \forall k = 1, \cdots, n$$

- ▶ In other words: $\langle \psi(t), t^k \rangle = 0$, the mother wavelet is orthogonal to polynomials of degree $\leq n$
- Interest: the more a wavelet function has null moments, the more the signal representation is sparse. Essential property for compression.
- Properties of wavelet basis having many null moments:
 - the scaling function better approximates smooth signals
 - ▶ the wavelet function is dual: it better captures signal discontinuities

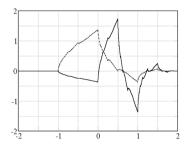
Other wavelet transforms (3)

Daubechies wavelet (2)

- ▶ Daubechies with 4 null moments (denoted D₄ or db2 with Matlab)
- Filters h et g are of length 4
- ▶ If $h = (h_0, h_1, h_2, h_3)$ then $g = (h_3, -h_2, h_1, -h_0)$ (eq.(7))
- Constraints to determine the coefficients:
 - ψ of null mean $\Rightarrow h_3 h_2 + h_1 h_0 = 0$
 - ψ with 4 null moments $\Rightarrow h_3 2h_2 + 3h_1 4h_0 = 0$
 - $\langle \psi(t), \psi(t-1) \rangle = 0 \Rightarrow h_1 h_3 + h_2 h_0 = 0$
 - $\|\phi\| = 1 \Rightarrow h_0 + h_1 + h_2 + h_3 = 2$
- ▶ We find: $h_0 = \frac{1+\sqrt{3}}{4}$ $h_1 = \frac{3+\sqrt{3}}{4}$ $h_2 = \frac{3-\sqrt{3}}{4}$ $h_3 = \frac{1-\sqrt{3}}{4}$

Other wavelet transforms (3)

Daubechies wavelet (3)



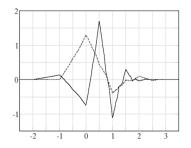


Figure: Daubechie scaling and wavelet functions with 4 null moments (db2) and 6 null moments (db3)

Content

Part 1: Fourier Transform, Short Time Fourier Transform

Part 2: Wavelets

Part 3: discrete wavelet transform for images, applications Discrete wavelet transform for images Applications

2-D DWT for images

- ▶ 2-D Haar decomposition for a 2-D signal
- ► Two approaches:
 - the standard decomposition: 1-D DWT on one direction (lines), than
 1-D DWT on the other direction (columns)
 - non standard decomposition: the 1-D DWT is alternated on lines and columns
 - both approaches lead to two specific 2-D Haar bases
- Advantages:
 - standard: only 1-D transforms
 - ▶ non standard, faster: $\frac{8}{3}(n^2-1)$ operations against $4(n^2-n)$ for standard one

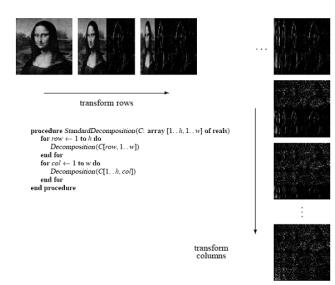
2-D DWT: standard decomposition (1)

▶ Basis of the Haar standard decomposition is a tensor product between the 1-D bases:

$$\Psi_{k,k'}^{j,j'}(x,y) = \psi_k^j(x)\psi_{k'}^{j'}(y)$$

- Algorithm:
 - 1. apply a DWT on each line to obtain an intermediary image, repeat up to the finest resolution j=0.
 - then, apply a DWT on each column of this image, repeat up to the finest resolution
- we obtain an unique approximation coefficient and a set of details coefficients for all resolutions

2-D DWT: standard decomposition (2)



2-D DWT: standard decomposition (3)

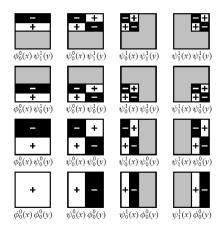


Figure: Haar standard basis

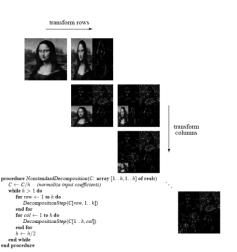
2-D DWT: non standard decomposition (1)

- ▶ Principle: perform an MRA of $L^2(\mathbb{R}^2)$
- ▶ Let's define $V^j = V^j \otimes V^j$
- lacktriangle The details spaces are \mathcal{W}^j such as $\mathcal{V}^{j+1}=\mathcal{V}^j\oplus\mathcal{W}^j$
- ► Then, we have:

$$\mathcal{V}^{j+1} = V^{j+1} \otimes V^{j+1}
= (V^{j} \oplus W^{j}) \otimes (V^{j} \oplus W^{j})
= (V^{j} \otimes V^{j}) \oplus (W^{j} \otimes V^{j}) \oplus (V^{j} \otimes W^{j}) \oplus (W^{j} \otimes W^{j})
= V^{j} \oplus W^{j}$$

▶ Basis of \mathcal{W}^j : $\psi^j_k(x)\phi^j_{k'}(y)$, $\phi^j_k(x)\psi^j_{k'}(y)$, $\psi^j_k(x)\psi^j_{k'}(y)$, $k, k' \in \mathbb{Z}$

2-D DWT: non standard decomposition (2)



The DWT is alternated on lines and columns:

- 1. one iteration of 1-D DWT on each lines
- 2. one iteration of 1-D DWT on each column
- 3. repeat stages 1. and 2. on approximation image up to resolution j=0

2-D DWT: non standard decomposition (3)

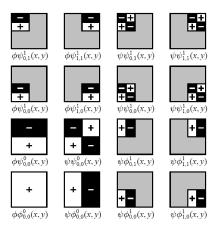


Figure: Base non standard de Haar 2-D

2-D DWT: Examples with Matlab²

[S1,H1,V1,D1] = dwt2(X,'haar');
imagesc([S1,H1;V1,D2])

[S2,H2,V2,D2] = dwt2(S1,'haar'); imagesc([[S2,H2;V2,D2],H1;V1,D1])

²Python: use PyWavelets package

Content

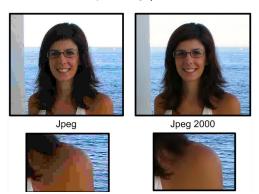
Part 1: Fourier Transform, Short Time Fourier Transform

Part 2: Wavelets

Part 3: discrete wavelet transform for images, applications
Discrete wavelet transform for images
Applications

Application: compression (1)

- ► Famous application (JPEG2000)
- ▶ JPEG compression (Fourier based): suppression of high frequencies ⇒ edges are degraded (Gibbs phenomena)
- Suitable wavelet basis for edges representation: Haar (the Haar scaling function is basically an edge)



Application: compression (2)

- ▶ Principle: keep only the biggest details coefficients
- ► We apply an threshold:

Image

Reconstruction with a threshold value of 10

error: 1%

- ▶ 47% of details coefficients are zero (hence lesser than 10)
- ▶ without compression: 10% are zero

Application: compression (3)

Reconstruction with a threshold value of 40

error: 4.3 %

- ▶ 89% of the details coefficients are zero.
- Drawback (Haar): high compression rate makes appear blocs in the image

Application: denoising (1)

- Y image acquisition having an additive noise B
- ► Retrieve *X* such as

$$Y = X + B$$

► Practically, we look for an operator *D* minimizing the reconstruction error:

$$E(\|X - D(Y)\|) = \sum_{i=1}^{N} E(X(i) - D(Y)(i))^{2}$$
 (8)

- Many methods! Depending on the noise characteristics
- ▶ If B centered Gaussian, a wavelet filtering gives good results
- Method:
 - projection on a wavelet basis (encoding)
 - hard threshold: details coefficients lesser than threshold S are nullified
 - soft threshold: details coefficients lesser than threshold S are nullified, other are attenuated
 - ► How to choose *S* ?

Application: denoising (2)

An optimal value minimizing (8) with respect to B be Gaussian of standard deviation σ :

$$S = \sigma \sqrt{2 \ln N}$$

 \triangleright Estimation of σ ?

$$\hat{\sigma} = \frac{M_s}{0,6745}$$

with M_s median value of details coefficients at the finest resolution

- ▶ Wavelet basis?
 - ► Haar
 - Daubechies
 - others: curvelets, ridgelets, . . .

Application: denoising (3)

Haar

Gaussian noise

Daubechies (db3)

Other applications

- 3-D mesh: approximation of a volume by decomposition on Haar wavelets
- Pattern recognition: for example, faces characterization, by projection on a wavelets basis
- ► Texture characterization and modeling
- Image watermarking: the trademark is projected on a wavelets basis, highest coefficients are retained and added to image details coefficients
- ► Sparse representation: wavelets allow sparse representations i.e. having a minimal number of coefficients