TADI - Wavelets - Tutorial works

Master IMA/DIGIT, Sorbonne University

January 2024

Fourier Analysis

Reminder:

$$
\begin{aligned}
\cos (p)+\cos (q) & =2 \cos \left(\frac{p+q}{2}\right) \cos \left(\frac{p-q}{2}\right) \\
\cos (p)-\cos (q) & =-2 \sin \left(\frac{p+q}{2}\right) \sin \left(\frac{p-q}{2}\right) \\
\sin (p)+\sin (q) & =2 \sin \left(\frac{p+q}{2}\right) \cos \left(\frac{p-q}{2}\right) \\
\sin (p)-\sin (q) & =2 \sin \left(\frac{p-q}{2}\right) \cos \left(\frac{p+q}{2}\right) \\
\cos (x) & =\frac{e^{i x}+e^{-i x}}{2} \\
\sin (x) & =\frac{e^{i x}-e^{-i x}}{2 i} \\
e^{i n x} & =\cos (n x)+i \sin (n x)
\end{aligned}
$$

$$
\begin{aligned}
\cos (a+b) & =\cos (a) \cos (b)-\sin (a) \sin (b) \\
\cos (a-b) & =\cos (a) \cos (b)+\sin (a) \sin (b) \\
\sin (a+b) & =\sin (a) \cos (b)+\cos (a) \sin (b) \\
\sin (a-b) & =\sin (a) \cos (b)-\cos (a) \sin (b) \\
2 \cos (a) \cos (b) & =\cos (a+b)+\cos (a-b) \\
2 \sin (a) \sin (b) & =\cos (a-b)-\cos (a+b) \\
2 \sin (a) \cos (b) & =\sin (a+b)+\sin (a-b) \\
X(f): f \mapsto X(f) & =\int_{-\infty}^{+\infty} x(t) e^{-i 2 \pi f t} d t \\
\text { int. by part : } \int u^{\prime} v & =[u v]-\int u v^{\prime}
\end{aligned}
$$

Exercise 1: Fourier Series

1. Let E be the vector space of continuous functions defined on $[-\pi, \pi[$ valued in \mathbb{C}, with associated scalar product:

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) \bar{g}(t) d t
$$

- Prove that the family \mathcal{F} defined by $\{\cos (n x) \mid n \in \mathbb{N}\} \cup\left\{\sin (n x) \mid n \in \mathbb{N}^{\star}\right\}$ is orthogonal.
- Is \mathcal{F} a basis for F, the vector space of 2π periodic functions?
- Propose an orthonormal basis for F.

2. Fourier Series: all 2π periodic function writes:

$$
\begin{aligned}
f(x) & =\frac{1}{2} a_{0}+\sum_{n=1}^{+\infty} a_{n} \cos (n x)+b_{n} \sin (n x) \\
& =\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}
\end{aligned}
$$

Express coefficients c_{n} as function of a_{n} and b_{n}.
3. Prove that the family $\left\{e^{i n x}\right\}_{n \in \mathbb{Z}}$ is an orthogonal basis for $L^{2}([0,2 \pi])$.

Exercise 2: Fourier transform

1. Let $z(t)=x(t-\tau)$, prove that $Z(f)=e^{-2 i \pi f \tau} X(f)$.
2. Prove that if x is pair (respectively impair), its Fourier transform is pair (respectively impair).
3. Let x be such as $\lim _{t \rightarrow \pm \infty} x(t)=0$, let $y=x^{\prime}$, prove that $Y(f)=2 i \pi f X(f)$.
4. Let $y(t)=t x(t)$, prove that $X^{\prime}(f)=-2 i \pi Y(f)$.

Exercise 3: Fourier transform of usual functions

1. $\operatorname{Rect}\left(\frac{t}{T}\right)$, with $\operatorname{Rect}(t)=\left\{\begin{array}{ll}1 & \text { si }|t| \leq \frac{1}{2} \\ 0 & \text { sinon }\end{array}\right.$ (Gate or Rectangular function)
2. $x(t)=e^{-\alpha|t|}, \alpha>0$
3. $g(t)=e^{-b^{2} t^{2}}$,

- prove that $g^{\prime}(t)+2 b^{2} t g(t)=0$
- deduce that $G^{\prime}(f)+\frac{2 \pi^{2}}{b^{2}} G(f)=0$
- and that $G(f)=\frac{\sqrt{\pi}}{|b|} e^{-\frac{\pi^{2} f^{2}}{b^{2}}}$

4. $k(t)=e^{-\alpha t} \mathbb{1}_{t \geq 0}, \alpha>0$
5. $z(t)=t \mathbb{1}_{t \in]-a, a[}$

Exercise 4: frequency resolution and windowing

Let us consider the Sine function $x(t)=\cos \left(2 \pi f_{0} t\right)$ and the Rectangular function $r(t)=\operatorname{Rect}\left(\frac{t}{L}\right)$. We recall that $X(f)=\frac{1}{2}\left(\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right)$.

1. Determine the Fourier transform of $z(t)=x(t) r(t)$.
2. What can we conclude about the frequency resolution?

Exercise 5: Short-time Fourier Transform

Reminder:

$$
\operatorname{TFF}(x)(f, b)=\int_{\mathbb{R}} x(t) \bar{w}(t-b) e^{-2 i \pi f t} d t
$$

Let's consider the following 1-D signal:

$$
x(t)=\cos \left(2 \pi f_{1} t\right) \operatorname{Rect}\left(\frac{t-T_{1}}{2 T_{1}}\right)+\cos \left(4 \pi f_{1} t\right) \operatorname{Rect}\left(\frac{t-3 T_{1}}{2 T_{1}}\right)
$$

with $f_{1}=\frac{1}{T_{1}}$

1. Draw the graph of signal $x(t)$.
2. Determine and represent the spectrum of x for various disjoint temporal windows of length respectively $\frac{4}{f_{1}}(1$ window $), \frac{2}{f_{1}}(2$ windows $), \frac{1}{f_{1}}(4$ windows $), \frac{1}{2 f_{1}}$ (8 windows).
3. What previous windows can separate in time and in frequency the components of x ? What is the best compromise?

Haar Wavelets

Let's consider the vector space of square integrable fonctions defined on \mathbb{R} and denoted $E=L^{2}(\mathbb{R})$. Let ϕ be the scale function defined on \mathbb{R} by:

$$
\phi(t)= \begin{cases}1 & t \in[0,1[\\ 0 & \end{cases}
$$

and $\phi_{k}^{j}(t)=\sqrt{2^{j}} \phi\left(2^{j} t-k\right)$:

$$
\phi_{k}^{j}(t)=\left\{\begin{array}{cl}
\sqrt{2^{j}} & t \in\left[\frac{k}{2^{j}}, \frac{k+1}{2^{j}}[\right. \\
0 &
\end{array}\right.
$$

Exercise 6: multiresolution analysis of E

1. Prove that ϕ is an admissible scale function to build a multiresolution analysis of E.
2. Describe V^{0}, V^{j}.

We recall the multiresolution analysis of a vector space E :

1. $\forall j \in \mathbb{Z} \quad V^{j} \subset V^{j+1}$
2. $\lim _{j \rightarrow-\infty} V^{j}=\bigcap_{j \in \mathbb{Z}} V^{j}=\emptyset$
3. $\lim _{j \rightarrow+\infty} V^{j}=\bigcup_{j \in \mathbb{Z}} V^{j}=E$
4. $\exists \phi$ such as $\{\phi(.-k)\}_{k \in \mathbb{Z}}$ is an orthornormal basis of V^{0}
5. $\forall j \in \mathbb{Z}, f \in V^{j} \Leftrightarrow f(2.) \in V^{j+1}$
6. (consequence) $\forall j, k \in \mathbb{Z}, f \in V^{j} \Leftrightarrow f\left(.-2^{j} k\right)$

Exercise 7: orthonormal basis of Haar scale functions

Let's consider the space of square integrable functions defined on $\left[0,1\left[\right.\right.$: $E=L^{2}([0,1[)$. We apply a multiresolution analysis using ϕ, we have:

- V^{0} the space of constant functions on $[0,1[($ dimension 1$)$
- V^{1} the space of constant functions on $\left[0, \frac{1}{2}\left[\right.\right.$ and $\left[\frac{1}{2}, 1[\right.$ (dimension 2)
- V^{j} the space of constant functions on the 2^{j} intervals $\left[\frac{k}{2^{j}}, \frac{k+1}{2^{j}}\left[, k=0, \cdots, 2^{j}-1\right.\right.$ (dimension 2^{j})

1. Verify that the family of functions $\left(\phi_{k}^{j}\right)_{k \in\left\{0, \cdots, 2^{j}-1\right\}}$ is an orthonormal basis of V^{j}.
2. Draw the graph of functions ϕ_{0}^{1} et ϕ_{1}^{1} (basis of V^{1}), and of functions $\phi_{0}^{2}, \phi_{1}^{2}, \phi_{2}^{2}, \phi_{3}^{2}\left(\right.$ basis of $\left.V^{2}\right)$.

Exercise 8: orthonormal basis of Haar details functions

1. Determine the two elements ψ_{0}^{1} and ψ_{1}^{1} of the basis of the vector space W^{1} such as $V^{2}=V^{1} \oplus W^{1}$.

- Compression: express $\phi_{0}^{1}, \phi_{1}^{1}, \psi_{0}^{1}$ and ψ_{1}^{1} as functions of $\left(\phi_{k}^{2}\right)_{k \in\{0,1,2,3\}}$
- Uncompression: express $\left(\phi_{k}^{2}\right)_{k \in\{0,1,2,3\}}$ as functions of $\phi_{0}^{1}, \phi_{1}^{1}, \psi_{0}^{1}$ and ψ_{1}^{1}
- Determine the function ψ such as $\psi_{k}^{1}(t)=\sqrt{2} \psi(2 t-k)$

2. Generalization: deduce the definition of the 2^{j} Haar details functions $\left(\psi_{k}^{j}\right)_{k \in\left\{0, \cdots, 2^{j}-1\right\}}$ as an orthonormal basis of spaces W^{j} such as $V^{j+1}=V^{j} \oplus W^{j}$.
a) Compression: express $\left(\phi_{k}^{j}\right)$ and $\left(\psi_{k}^{j}\right)$ as function of $\left(\phi_{k}^{j+1}\right)$
b) Uncompression: express $\left(\phi_{k}^{j+1}\right)$ as function of $\left(\phi_{k}^{j}\right)$ and $\left(\psi_{k}^{j}\right)$
c) Compression: express coefficients $\left(s_{k}^{j}\right)$ et $\left(d_{k}^{j}\right)$ as fonction of coefficients $\left(s_{k}^{j+1}\right)$
d) Uncompression: express coefficients $\left(s_{k}^{j+1}\right)$ as function of coefficients $\left(s_{k}^{j}\right)$ and $\left(d_{k}^{j}\right)$
e) Why the relation between coefficients s and d is the same than between functions ϕ and ψ ?

Exercise 9: representation of a signal in the Haar wavelet basis

Let S be the following discrete signal $[2,4,8,12,14,0,2,1]$.

1. Project S in the space $V^{0} \oplus W^{0} \oplus W^{1} \oplus W^{2}$.
2. Draw the signal obtained for each resolution level (i.e. projection of S in V^{2}, V^{1} and V^{0}), and details coefficients (i.e. projection of S in W^{2}, W^{1} and W^{0})).
3. The module of the Discrete Fourier Transform of S is: $[9,8,11,24,44,24,11,8]$ (rounded to the closest integer).

Discuss the interpretation in terms of scale space of the signal in the Haar wavelet space and in the Fourier space.

